
MMX TM Technology Overview

4

INTRODUCTION
The volume and complexity of data processed by today’s personal computer is increasing
exponentially, placing incredible demands on the microprocessor. New communications, games
and “edutainment” applications feature video, 3-D, animation, audio and virtual reality, all of
which demand ever increasing levels of performance.

MMXTM technology is designed to accelerate multimedia and communications software. The
technology includes new instructions and data types that allow applications to achieve significant
new levels of performance. It exploits the parallelism inherent in many multimedia and
communication algorithms, yet maintains full compatibility with existing operating system and
application software.

MMX technology is the most significant enhancement to the Intel Architecture since the Intel386TM

processor, which extended the architecture to 32 bits. Processors enabled with MMX technology
will deliver enough performance to execute compute-intensive communication and multimedia
tasks with headroom left to run other tasks or applications. It allows software developers to design
richer, more exciting applications for the PC. The volume of MMX technology-enabled systems
will grow rapidly in 1997 as the technology is incorporated into multiple-processor generations
from Intel.

The definition of MMX technology resulted from a joint effort between Intel’s microprocessor
architects and software developers. A wide range of software applications were analyzed, including
graphics, MPEG video, music synthesis, speech compression, speech recognition, image
processing, games, video conferencing and more. These applications were broken down to identify
the most compute-intensive routines, which were then analyzed in detail using advanced computer-
aided engineering tools. The results of this extensive analysis showed many common,
fundamental characteristics across these diverse software categories. The key attributes of these
applications were:

• Small integer data types (for example: 8-bit graphics pixels, 16-bit audio samples)

• Small, highly repetitive loops

• Frequent multiplies and accumulates

• Compute-intensive algorithms

• Highly parallel operations

MMX technology is designed as a set of basic, general purpose integer instructions that can be
easily applied to the needs of the wide diversity of multimedia and communications applications.
The highlights of the technology are:

• Single Instruction, Multiple Data (SIMD) technique

• 57 new instructions

• Eight 64-bit wide MMX registers

• Four new data types

The basis for MMX technology is a technique called Single Instruction, Multiple Data (SIMD).
This allows many pieces of information to be processed with a single instruction, provide
parallelism that greatly increases performance. This technology combined with the IA superscalar
architecture will provide substantial performance enhancement to the PC platform. MMX
technology is integrated into Intel Architecture processors in a way that maintains full
compatibility with existing operating systems, including MS DOS*, Windows* 3.1, Windows 95,
OS/2* and Unix*. In addition, the full base of Intel architecture software will run on MMX
technology-enabled systems.

MMX technology was defined to be simple. MMX technology is general enough to address the
needs of a large domain of PC applications built from current and future algorithms. MMX

MMX TM Technology Overview

5

instructions are not privileged; they can be used in applications, codecs, algorithms, and drivers.
These instructions are also optimized for short arithmetic where the overhead for converting to and
from floating-point is significant.

DATA TYPES
The principal data type of the IA MMX instruction set is the packed, fixed-point integer, where
multiple integer words are grouped into a single 64-bit quantity. These 64-bit quantities are moved
into the 64-bit MMX registers. The decimal point of the fixed-point values is implicit and is left for
the programmer to control for maximum flexibility. The supported data types are signed and
unsigned fixed-point integers, bytes, words, doublewords and quadwords.

The four MMX technology data types are:

Packed byte Eight bytes packed into one 64-bit quantity

Packed word Four 16-bit words packed into one 64-bit quantity

Packed doubleword Two 32-bit double words packed into one 64-bit quantity

Quadword One 64-bit quantity

As an example, graphics data are generally represented in 8-bit integers, or bytes. With MMX
technology, eight of these pixels are packed together in a 64-bit quantity and moved into an MMX
register. When an MMX instruction executes, it takes all eight of the pixel values at once from the
MMX register, performs the arithmetic or logical operation on all eight elements in parallel, and
writes the result into an MMX register.

Data Types in 64-bit Registers

 63 0

 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 Packed byte (eight 8-bit elements)

 63 48 47 32 31 16 15 0

 Packed word (four 16-bit elements)

Quadword (64-bit element)

 63 32 31 0

 Packed doubleword (two 32-bit elements)

COMPATIBILITY
MMX technology retains its full compatibility with existing operating systems and applications by
aliasing its registers and state upon the IA floating-point registers and state. No new registers or
state are added to support MMX technology. This means the operating system uses the standard
mechanisms for interacting with the floating point state to save and restore MMX code. For
example, during a task switch, the operating system would use an FSAV and FRSTR to preserve
either floating point or MMX code. Aliasing the MMXstate upon the floating-point state does not
preclude applications from executing both MMX technology routines and floating point routines.

Floating-point instructions that save/restore the floating-point state also handle the MMX

MMX TM Technology Overview

6

state (for example, during context switching). The same techniques used by the floating-point
architecture to interface with the operating system are used by MMX technology. MMX
technology does not introduce any new exception or state information, so today’s operating
systems can enable applications using MMX instructions.

DETECTING THE PRESENCE OF MMX ™ TECHNOLOGY
Detecting existence of MMX technology on an Intel microprocessor is done by executing the
CPUID instruction and checking a set bit. This gives software developers the flexibility to
determine the specific code in their software to execute. During install or run time the software can
query the microprocessor to determine if MMX technology is supported and install or execute the
code that includes, or does not include, MMX instructions based on the result.

INSTRUCTIONS
The MMX instructions cover several functional areas including:

• Basic arithmetic operations such as add, subtract, multiply, arithmetic shift and multiply-add

• Comparison operations

• Conversion instructions to convert between the new data types - pack data together, and unpack
from small to larger data types

• Logical operations such as AND, AND NOT,OR, and XOR

• Shift operations

• Data Transfer (MOV) instructions for MMX register-to-register transfers, or 64-bit and 32-bit
load/store to memory

Arithmetic and logical instructions are designed to support the different packed integer data types.
These instructions have a different op code for each data type supported. As a result, the new
MMX technology instructions are implemented with 57 op codes.

MMX technology uses general-purpose, basic instructions that are fast and are easily assigned to
the parallel pipelines in Intel processors. By using this general-purpose approach, MMX
technology provides performance that will scale well across current and future generations of Intel
processors.

MMX TM Technology Overview

7

MMX™ Instruction Set Summary
The instructions and corresponding mnemonics in the table below are grouped by categories of
related functions.

If an instruction supports multiple data types—byte (B), word (W), doubleword (DW), or
quadword (QW), the datatypes are listed in brackets. Only one data type may be chosen for a
given instruction. For example, the base mnemonic PADD (packed add) has the following
variations: PADDB, PADDW, and PADDD. The number of opcodes associated with each base
mnemonic is listed.

Category Mnemonic

Number of
DifferentO

pcodes Description

Arithmetic PADD[B,W,D]

PADDS[B,W]

PADDUS[B,W]

PSUB[B,W,D]

PSUBS[B,W]

PSUBUS[B,W]

PMULHW

PMULLW

PMADDWD

3

2

2

3

2

2

1

1

1

Add with wrap-around on [byte, word, doubleword]

Add signed with saturation on [byte, word]

Add unsigned with saturation on [byte, word]

Subtraction with wrap-around on [byte, word, doubleword]

Subtract signed with saturation on [byte, word]

Subtract unsigned with saturation on [byte, word]

Packed multiply high on words

Packed multiply low on words

Packed multiply on words and add resulting pairs

Comparison PCMPEQ[B,W,D]

PCMPGT[B,W,D]

3

3

Packed compare for equality [byte, word, doubleword]

Packed compare greater than [byte, word, doubleword]

Conversion PACKUSWB

PACKSS[WB,DW]

PUNPCKH

 [BW,WD,DQ]

PUNPCKL

 [BW,WD,DQ]

1

2

3

3

Pack words into bytes (unsigned with saturation)

Pack [words into bytes, doublewords into words]

 (signed with saturation)

Unpack (interleave) high-order

 [bytes, words, doublewords] from MMXTM register

Unpack (interleave) low-order

 [bytes, words, doublewords] from MMX register

Logical PAND

PANDN

POR

PXOR

1

1

1

1

Bitwise AND

Bitwise AND NOT

Bitwise OR

Bitwise XOR

Shift PSLL[W,D,Q]

PSRL[W,D,Q]

PSRA[W,D]

6

6

6

Packed shift left logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right arithmetic [word, doubleword] by

 amount specified in MMX register or by immediate value

Data Transfer MOV[D,Q] 4 Move [doubleword, quadword] to MMX register or from

 MMX register

FP & MMX
State Mgmt

EMMS 1 Empty MMX state

3/4/96 11:52 AM CHPT1.DOC

INTEL CONFIDENTIAL
(until publication date)

1
Introduction to the
Intel Architecture
MMX™ Technology

1-1

CHAPTER 1
INTRODUCTION TO THE INTEL ARCHITECTURE

MMX™ TECHNOLOGY

1.1. ABOUT THE INTEL ARCHITECTURE MMX™
TECHNOLOGY

The media extensions for the Intel Architecture (IA) were designed to enhance performance
of advanced media and communication applications. The MMX™ technology provides a new
level of performance to computer platforms by adding new instructions and defining new
64-bit data types, while preserving compatibility with software and operating systems
developed for the Intel Architecture.

The MMX technology introduces new general-purpose instructions. These instructions
operate in parallel on multiple data elements packed into 64-bit quantities. They perform
arithmetic and logical operations on the different data types. These instructions accelerate the
performance of applications with compute-intensive algorithms that perform localized,
recurring operations on small native data. This includes applications such as motion video,
combined graphics with video, image processing, audio synthesis, speech synthesis and
compression, telephony, video conferencing, 2D graphics, and 3D graphics

The IA MMX instruction set has a simple and flexible software model with no new mode or
operating-system visible state. The MMX instruction set is fully compatible with all Intel
Architecture microprocessors. All existing software continues to run correctly, without
modification, on microprocessors that incorporate the MMX technology, as well as in the
presence of existing and new applications that incorporate this technology.

1.1.1. Single Instruction, Multiple Data (SIMD) Technique

The MMX technology uses the Single Instruction, Multiple Data (SIMD) technique. This
technique speeds up software performance by processing multiple data elements in parallel,
using a single instruction. The MMX technology supports parallel operations on byte, word,
and doubleword data elements, and the new quadword (64-bit) integer data type.

INTRODUCTION TO THE INTEL ARCHITECTURE MMX™ TECHNOLOGY

1-2

1.1.2. Performance Improvement

Modern media, communications, and graphics applications now include sophisticated
algorithms that perform recurring operations on small data types. The MMX technology
directly addresses the need of these applications. For example, most audio data is represented
in 16-bit (word) quantities. The MMX instructions can operate on four of these words
simultaneously with one instruction. Video and graphics information is commonly
represented as palletized 8-bit (byte) quantities; one MMX instruction can operate on eight of
these bytes simultaneously.

1.2. ABOUT THIS MANUAL

It is assumed that the reader is familiar with the Intel Architecture software model and
Assembly language programming.

This manual describes the IA MMX instruction set and introduces the architectural features,
instruction set, data types, data formats, application programming model, and system
programming model of the MMX technology. It also explains how to use the new
instructions to significantly increase the performance of applications.

In this context, architecture refers to the conceptual structure and functional behavior of
MMX technology as seen by a programmer, but not the logical organization or performance
aspects of the actual implementation.

This manual is organized into five chapters, including this chapter (Chapter 1), and four
appendices:

Chapter 1Introduction to the Intel Architecture MMX™ Technology

Chapter 2Intel Architecture MMX™ Technology Features: This chapter provides an
overview of the IA MMX technology and its new features.

Chapter 3Application Programming Model: This chapter describes the software
conventions and architecture of the IA MMX technology. It defines the steps for writing
MMX code.

Chapter 4System Programming Model: This chapter discusses interfacing with the
operating system and compatibility with Intel Architecture.

Chapter 5Intel Architecture MMX™ Instruction Set: This chapter details the
instructions, mnemonics, and instruction notations. A full description including graphical
representations of the new instructions is presented.

Appendix AIA MMX™ Instruction Set Summary: This appendix summarizes the
instructions by functional groups.

INTRODUCTION TO THE INTEL ARCHITECTURE MMX™ TECHNOLOGY

1-3

Appendix BIA MMX™ Instruction Formats and Encodings: This appendix lists the
instruction formats and encodings. It also lists a detailed break-down of the instruction
operations and the supported data types.

Appendix CAlphabetical list of IA MMX™ Instruction Set Mnemonics: This appendix
summarizes operand types, encodings in hexadecimal, and the formats used.

Appendix DIA MMX™ Instruction Set Opcode Map: This appendix provides a detailed
encoding table of opcode mappings.

1.3. RELATED DOCUMENTATION

Refer to the following documentation for more information related to Intel Architecture:

Pentium Processor Family Developer’s Manual, Volume 3: Architecture and Programming
Manual. Intel Corporation, Order Number 240897.

Pentium Pro Processor Developer’s Manual, Volumes 2 and 3. Intel Corporation, Order
Numbers 242691 and 242692.

Intel Architecture MMX™ Technology Developers’ Manual - Intel Corporation, Order
Number 243010.

Refer to Intel’s corporate website for the latest information on related documentation:

http://www.intel.com

2
Intel Architecture
MMX™ Technology
Features

2-1

CHAPTER 2
INTEL ARCHITECTURE MMX™ TECHNOLOGY

FEATURES

This chapter provides a general overview of the architectural features of the Intel
Architecture MMX™ technology.

2.1. NEW FEATURES

MMX technology provides the following new features, while maintaining backward
compatibility with all existing Intel Architecture microprocessors, IA applications, and
operating systems.

• New data types

• Eight MMX registers

• Enhanced instruction set

The performance of applications which use these new features of MMX technology can be
enchanced.

2.2. NEW DATA TYPES

The principal data type of the IA MMX technology is the packed fixed-point integer. The
decimal point of the fixed-point values is implicit and is left for the user to control for
maximum flexibility.

 The IA MMX technology defines the following four new 64-bit data types (See Figure 2-1):

Packed byte Eight bytes packed into one 64-bit quantity

Packed word Four words packed into one 64-bit quantity

Packed doubleword Two doublewords packed into one 64-bit quantity

Quadword One 64-bit quantity

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-2

63

Packed bytes (8x8 bits)

56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

63

Packed word (4x16 bits)

48 47 32 31 16 15 0

63

Packed doublewords (2x32 bits)

32 31 0

63

Quadword (64 bits)

0

3006002

Figure 2-1. Packed Data Types

2.3. MMX™ REGISTERS

The IA MMX technology provides eight 64-bit, general-purpose registers. These registers are
aliased on the floating-point registers. The operating system handles the MMX technology as
it would handle floating-point. (See Section 4.3 for more details on register aliasing.)

The MMX registers can hold packed 64-bit data types. The MMX instructions access the
MMX registers directly using the register names MM0 to MM7 (See Figure 2-2).

MMX registers can be used to perform calculations on data. They cannot be used to address
memory; addressing is accomplished by using the integer registers and standard IA
addressing modes.

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-3

63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

3006044

Figure 2-2. MMX™ Register Set

2.4. EXTENDED INSTRUCTION SET

The IA MMX instruction set supplies a rich set of instructions that operate on all data
elements of a packed data type, in parallel. The MMX instructions can operate on either
signed or unsigned data elements.

The MMX instructions implement two new principles (discussed in section 2.4.2.):

• Operations on packed data

• Saturation arithmetic

2.4.1. Packed Data

The MMX instructions can operate on groups of eight bytes, four words, and two
doublewords. These groups of 64 bits are referred to as packed data. The same 64 bits of data
can be treated as any one of the packed data types. Data is cast by the type specified by the
instruction.

For example, the PADDB (Add Packed Bytes) instruction adds two groups of eight packed
bytes. The PADDW (Add Packed Words) instruction, which adds packed words, could

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-4

operate on the same 64 bits as the PADDB instruction treating the 64 bits as four 16-bit
words.

2.4.2. Saturation Arithmetic and Wrap Around

The MMX technology supports a new arithmetic capability known as saturating arithmetic.
Saturation is best defined by contrasting it with wraparound mode.

In wraparound mode, results that overflow or underflow are truncated and only the lower
(least significant) bits of the result are returned. That is, the carry is ignored.

In saturation mode, results of an operation that overflow or underflow are clipped (saturated)
to a data-range limit for the data type (see Table 2-1). The result of an operation that exceeds
the range of a data-type saturates to the maximum value of the range. A result that is less
than the range of a data type saturates to the minimum value of the range. This is useful in
many cases, such as color calculations.

For example, when the result exceeds the data range limit for signed bytes, it is saturated to
0x7F (0xFF for unsigned bytes). If a value is less than the data range limit, it is saturated to
0x80 for signed bytes (0x00 for unsigned bytes).

Saturation provides a useful feature of avoiding wraparound artifacts. In the example of color
calculations, saturation causes a color to remain pure black or pure white without allowing
for an inversion.

Table 2-1. Data Range Limits for Saturation

Lower Limit Upper Limit

Signed Hexadecimal Decimal Hexadecimal Decimal

Byte 80H -128 7FH 127

Word 8000H -32,768 7FFFH 32,767

Unsigned

Byte 00H 0 FFH 255

Word 0000H 0 FFFFH 65,535

MMX instructions do not indicate overflow or underflow occurrence by generating
exceptions or setting flags.

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-5

2.4.3. Instruction Group Overview

This section provides an overview of the MMX instruction groups. See Chapter 5 for detailed
information on the instructions, including information on encoding, operation, and
exceptions.

The fifty-seven new MMX instructions are grouped into these categories:

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Data Transfer Instructions

• Empty MMX State (EMMS) Instruction

2.4.3.1. ARITHMETIC INSTRUCTIONS

Packed Addition and Subtraction

The PADD (Packed Add) and PSUB (Packed Subtract) instructions add or subtract the signed
or unsigned data elements of the source operand to or from the destination operand in wrap-
around mode. These instructions support packed byte, packed word, and packed doubleword
data types.

The PADDS (Packed Add with Saturation) and PSUBS (Packed Subtract with Saturation)
instructions add or subtract the signed data elements of the source operand to or from the
signed data elements of the destination operand and saturate the result to the limits of the
signed data-type range. These instructions support packed byte and packed word data types.

The PADDUS (Packed Add Unsigned with Saturation) and PSUBUS (Packed Subtract
Unsigned with Saturation) instructions add or subtract the unsigned data elements of the
source operand to or from the unsigned data elements of the destination operand and saturate
the result to the limits of the unsigned data-type range. These instructions support packed
byte and packed word data types.

Packed Multiplication

Packed multiplication instructions perform four multiplications on pairs of signed 16-bit
operands, producing 32-bit intermediate results. Users may choose the low-order or high-
order parts of each 32-bit result.

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-6

The PMULHW (Packed Multiply High) and PMULLW (Packed Multiply Low) instructions
multiply the signed words of the source and destination operands and write the high-order or
low-order 16 bits of each of the results to the destination operand.

Packed Multiply Add

The PMADDWD (Packed Multiply and Add) instruction calculates the products of the signed
words of the source and destination operands. The four intermediate 32-bit doubleword
products are summed in pairs to produce two 32-bit doubleword results.

2.4.3.2. COMPARISON INSTRUCTIONS

The PCMPEQ (Packed Compare for Equal) and PCMPGT (Packed Compare for Greater
Than) instructions compare the corresponding data elements in the source and destination
operands for equality or value greater than, respectively. These instructions generate a mask
of ones or zeros which are written to the destination operand. Logical operations can use the
mask to select elements. This can be used to implement a packed conditional move operation
without a branch or a set of branch instructions. No flags are set.

These instructions support packed byte, packed word and packed doubleword data types.

2.4.3.3. CONVERSION INSTRUCTIONS

Pack and Unpack

The Pack and Unpack instructions perform conversions between the packed data types.

The PACKSS (Packed with Signed Saturation) instruction converts signed words into signed
bytes or signed doublewords into signed words, in signed saturation mode.

The PACKUS (Packed with Unsigned Saturation) instruction converts signed words into
unsigned bytes, in unsigned saturation mode.

The PUNPCKH (Unpack High Packed Data) and PUNPCKL (Unpack Low Packed Data)
instructions convert bytes to words, words to doublewords, or doublewords to quadwords.

2.4.3.4. LOGICAL INSTRUCTIONS

The PAND (Bitwise Logical And), PANDN (Bitwise Logical And Not), POR (Bitwise
Logical OR), and PXOR (Bitwise Logical Exclusive OR) instructions perform bitwise logical
operations on 64-bit quantities.

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-7

2.4.3.5. SHIFT INSTRUCTIONS

The logical shift left, logical shift right and arithmetic shift right instructions shift each
element by a specified number of bits. The logical left and right shifts also enable a 64-bit
quantity (quadword) to be shifted as one block, assisting in data type conversions and
alignment operations.

The PSLL (Packed Shift Left Logical) and PSRL (Packed Shift Right Logical) instructions
perform a logical left or right shift, and fill the empty high or low order bit positions with
zeros. These instructions support packed word, packed doubleword, and quadword data
types.

The PSRA (Packed Shift Right Arithmetic) instruction performs an arithmetic right shift,
copying the sign bit into empty bit positions on the upper end of the operand. This instruction
supports packed word and packed doubleword data types.

2.4.3.6. DATA TRANSFER INSTRUCTIONS

The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to
MMX registers and visa versa, or from integer registers to MMX registers and visa versa.

The MOVQ (Move 64 Bits) instruction transfers 64-bits of packed data from memory to
MMX registers and vise versa, or transfers data between MMX registers.

2.4.3.7. EMMS (EMPTY MMX™ STATE) INSTRUCTION

The EMMS instruction empties the MMX state. This instruction must be used to clear the IA
MMX state (empty the floating-point tag word) at the end of an MMX routine before calling
other routines that can execute floating-point instructions.

2.4.4. Instruction Operand

All MMX instructions, except the EMMS instruction, reference and operate on two operands:
the source and destination operands. The right operand is the source and the left operand is
the destination. The destination operand may also be a second source operand for the
operation. The instruction overwrites the destination operand with the result.

For example, a two-operand instruction would be decoded as:

DEST(left operand) ← DEST (left operand) OP SRC (right operand)

 The source operand for all the MMX instructions (except the data transfer instructions), can
reside either in memory or in an MMX register. The destination operand resides in an MMX
register.

INTEL ARCHITECTURE MMX™ TECHNOLOGY FEATURES

2-8

 For data transfer instructions, the source and destination operands can also be an integer
register (for the MOVD instruction) or memory location (for both the MOVD and MOVQ
instructions).

2.5. COMPATIBILITY

The IA MMX state is aliased upon the IA floating-point state. No new state or mode is added
to support the MMX technology. The same floating-point instructions that save and restore
the floating-point state also handle the IA MMX state (for example, during context
switching).

 MMX technology uses the same interface techniques between the floating-point architecture
and the operating system (primarily for task switching purposes). For more detail, see
Section 4.1.

3
Application
Programming Model

3-1

CHAPTER 3
APPLICATION PROGRAMMING MODEL

 This chapter describes the application programming environment as seen by compiler writers
and assembly-language programmers. It also describes the architectural features which
directly affect applications.

3.1. DATA FORMATS

3.1.1. Memory Data Formats

The Intel Architecture MMX™ technology introduces new packed data types, each 64 bits
long. The data elements can be:

• eight packed, consecutive 8-bit bytes

• four packed, consecutive 16-bit words

• two packed, consecutive 32-bit doublewords

 The 64 bits are numbered 0 through 63. Bit 0 is the least significant bit (LSB), and bit 63 is
the most significant bit (MSB).

 The low-order bits are the lower part of the data element and the high-order bits are the upper
part of the data element. For example, a word contains 16 bits numbered 0 through 15, the
byte containing bits 0-7 of the word is called the low byte, and the byte containing bits 8-15
is called the high byte.

 Bytes in a multi-byte format have consecutive memory addresses. The ordering is always
little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

APPLICATION PROGRAMMING MODEL

3-2

63 0

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

56 55 48 47 40 39 32 31 24 23 16 15 8 7

Memory Address 1008h Memory Address 1000h

3006045

Figure 3-1. Eight Packed Bytes in Memory (at address 1000H)

3.1.2. IA MMX™ Register Data Formats

Values in IA MMX registers have the same format as a 64-bit quantity in memory. MMX
registers have two data access modes: 64-bit access mode and 32-bit access mode.

 The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between MMX
registers, all pack, logical and arithmetic instructions, and some unpack instructions.

 The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer
registers and MMX registers, and some unpack instructions.

3.1.3. IA MMX™ Instructions and the Floating-Point Tag Word

After each MMX instruction, the entire floating-point tag word is set to Valid (00s). The
Empty MMX State (EMMS) instruction sets the entire floating-point tag word to Empty
(11s).

Section 4.3.2. describes the effects of floating-point and MMX instructions on the floating-
point tag word. For details on floating-point tag word, refer to the Pentium® Processor
Family Developer’s Manual, Volume 3, Section 6.2.1.4.

APPLICATION PROGRAMMING MODEL

3-3

3.2. PREFIXES

Table 3-1 details the effect of a prefix on IA MMX instructions.

Table 3-1. IA MMX™ Instruction Behavior with Prefixes Used by Application Programs

Prefix Type The Effect of Prefix on IA MMX™ Instructions

Address size (67H) Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Operand size (66H) Ignored.

Segment override Affects IA MMX instructions with a memory operand.

Ignored by IA MMX instructions without a memory operand.

Repeat Ignored.

Lock (F0H) Generates an invalid opcode exception.

See the Pentium® Processor Family Developer’s Manual, Volume 3, Section 3.4. for
information related to prefixes.

3.3. WRITING APPLICATIONS WITH IA MMX™ CODE

3.3.1. Detecting IA MMX™ Technology Existence Using the
CPUID Instruction

Use the CPUID instruction to determine whether the processor supports the IA MMX
instruction set (refer to the Pentium® Processor Family Developer’s Manual, Volume 3,
Chapter 25, for more detail on the CPUID instruction). When the IA MMX technology
support is detected by the CPUID instruction, it is signaled by setting bit 23 (IA MMX
technology bit) in the feature flags to 1. In general, two versions of the routine can be
created: one with scalar instructions and one with MMX instructions. The application will
call the appropriate routine depending on the results of the CPUID instruction. If MMX
technology support is detected, then the MMX routine is called; if no support for the MMX
technology exists, the application calls the scalar routine.

NOTE

The CPUID instruction will continue to report the existence of the IA MMX
technology if the CR0.EM bit is set (which signifies that the CPU is
configured to generate exception Int 7 that can be used to emulate floating

APPLICATION PROGRAMMING MODEL

3-4

point instructions). In this case, executing an MMX instruction results in an
invalid opcode exception.

Example 3-1 illustrates how to use the CPUID instruction. This example does not represent
the entire CPUID sequence, but shows the portion used for IA MMX technology detection.

Example 3-1. Partial sequence of IA MMX™ technology detection by CPUID

... ; identify existence of CPUID instruction

...

... ; identify Intel processor

....
mov EAX, 1 ; request for feature flags
CPUID ; 0Fh, 0A2h CPUID instruction
test EDX, 00800000h ; Is IA MMX technology bit (Bit 23 of EDX) in feature flags set?
jnz MMX_Technology_Found

3.3.2. The EMMS Instruction

When integrating the MMX routine into an application running under an existing operating
system (OS), programmers need to take special precautions, similar to those when writing
floating-point (FP) code.

When an MMX instruction executes, the floating-point tag word is marked valid (00s).
Subsequent floating-point instructions that will be executed may produce unexpected results
because the floating-point stack seems to contain valid data. The EMMS instruction marks
the floating-point tag word as empty. Therefore, it is imperative to use the EMMS instruction
at the end of every MMX routine.

The EMMS instruction must be used in each of the following cases:

• Application utilizing FP instructions calls an MMX technology library/DLL

• Application utilizing MMX instructions calls a FP library/DLL

• Switch between MMX code in a task/thread and other tasks/threads in cooperative
operating systems.

If the EMMS instruction is not used when trying to execute a floating-point instruction, the
following may occur:

• Depending on the exception mask bits of the floating-point control word, a floating-
point exception event may be generated.

APPLICATION PROGRAMMING MODEL

3-5

• A "soft exception" may occur. In this case floating-point code continues to execute, but
generates incorrect results. This happens when the floating-point exceptions are masked
and no visible exceptions occur. The internal exception handler (microcode, not user
visible) loads a NaN (Not a Number) with an exponent of 11..11B onto the floating-point
stack. The NaN is used for further calculations, yielding incorrect results.

• A potential error may occur only if the operating system does NOT manage floating-
point context across task switches. These operating systems are usually cooperative
operating systems. It is imperative that the EMMS instruction execute at the end of all
the MMX routines that may enable a task switch immediately after they end execution
(explicit yield API or implicit yield API).

3.3.3. Interfacing with IA MMX™ Technology Procedures and
Functions

The MMX technology enables direct access to all the MMX registers. This means that all
existing interface conventions that apply to the use of other general registers such as EAX,
EBX will also apply to the MMX register usage.

An efficient interface might pass parameters and return values via the pre-defined MMX
registers, or a combination of memory locations (via the stack) and MMX registers. This
interface would have to be written in assembly language since passing parameters through
MMX registers is not currently supported by any existing C compilers. Do not use the EMMS
instruction when the interface to the MMX code has been defined to retain values in the
MMX register.

If a high-level language, such as C, is used, the data types could be defined as a 64-bit
structure with packed data types.

When implementing usage of IA MMX instructions in high level languages other approaches
can be taken, such as:

• Passing MMX type parameters to a procedure by passing a pointer to a structure via the
integer stack.

• Returning a value from a function by returning the pointer to a structure.

3.3.4. Writing Code with IA MMX™ and Floating-Point Instructions

The MMX technology aliases the MMX registers on the floating-point registers. The main
reason for this is to enable MMX technology to be fully compatible and transparent to
existing software environments (operating systems and applications). This way operating

APPLICATION PROGRAMMING MODEL

3-6

systems will be able to include new applications and drivers that use the IA MMX
technology.

An application can contain both floating-point and MMX code. However, the user is
discouraged from causing frequent transitions between MMX and floating-point instructions
by mixing MMX code and floating-point code.

3.3.4.1. RECOMMENDATIONS AND GUIDELINES

Do not mix MMX code and floating-point code at the instruction level for the following
reasons:

• The TOS (top of stack) value of the floating-point status word is set to 0 after each MMX
instruction. This means that the floating-point code loses its pointer to its floating-point
registers if the code mixes MMX instructions within a floating-point routine.

• An MMX instruction write to an MMX 64-bit register writes ones (11s) to the exponent
part of the corresponding floating-point register.

• Floating-point code that uses register contents that were generated by the MMX
instructions may cause floating-point exceptions or incorrect results. These floating-point
exceptions are related to undefined floating-point values and floating-point stack usage.

• All MMX instructions (except EMMS) set the entire tag word to the valid state (00s in
all tag fields) without preserving the previous floating-point state.

• Frequent transitions between the MMX and floating-point instructions may result in
significant performance degradation in some implementations.

If the application contains floating-point and MMX instructions, follow these guidelines:

• Partition the MMX technology module and the floating-point module into separate
instruction streams (separate loops or subroutines) so that they contain only instructions
of one type.

• Do not rely on register contents across transitions.

• When the MMX state is not required, empty the MMX state using the EMMS instruction.

• Exit the floating-point code section with an empty stack.

APPLICATION PROGRAMMING MODEL

3-7

Example 3-2. Floating-point and MMX™ Code

 FP_code:
..
.. (*leave the FP stack empty*)

 MMX_code:
..
EMMS (*mark the FP tag word as empty*)

 FP_code 1:
..
.. (*leave the FP stack empty*)

3.3.5. Multitasking Operating System Environmen t

An application needs to identify the nature of the multitasking operating system on which it
runs. Each task retains its own state which must be saved when a task switch occurs. The
processor state (context) consists of the integer registers and floating-point and MMX
registers.

Operating systems can be classified into two types:

• Cooperative multitasking operating system

• Preemptive multitasking operating system

The behavior of the two operating system types in context switching is described in
Section 4.1.1.

3.3.5.1. COOPERATIVE MULTITASKING OPERATING SYSTEM

Cooperative multitasking operating systems do not save the FP or MMX state when
performing a context switch. Therefore, the application needs to save the relevant state
before relinquishing direct or indirect control to the operating system.

3.3.5.2. PREEMPTIVE MULTITASKING OPERATING SYSTEM

Preemptive multitasking operating systems are responsible for saving and restoring the FP
and MMX state when performing a context switch. Therefore, the application does not have
to save or restore the FP and MMX state.

APPLICATION PROGRAMMING MODEL

3-8

3.3.6. Exception Handling in IA MMX™ Application Code

MMX instructions generate the same type of memory-access exceptions as other Intel
Architecture instructions. Some examples are: page fault, segment not present, and limit
violations. Existing exception handlers can handle these types of exceptions. They do not
have to be modified.

Unless there is a pending floating-point exception, MMX instructions do not generate
numeric exceptions. Therefore, there is no need to modify existing exception handlers or add
new ones.

If a floating-point exception is pending, the subsequent MMX instruction generates a
numeric error exception (Int 16 and/or FERR#). The MMX instruction resumes execution
upon return from the exception handler.

3.3.7. Register Mapping

The IA MMX registers and their tags are mapped to physical locations of the floating-point
registers and their tags. Register aliasing and mapping is described in more detail in
Section 4.3.1.

4
System Programming
Model

4-1

CHAPTER 4
SYSTEM PROGRAMMING MODEL

This chapter presents the interface of the Intel Architecture MMX™ technology to the
operating system.

4.1. CONTEXT SWITCHING

This section describes the behavior of operating systems during context switching.

Different operating systems take different approaches for state-saving:

• Some operating systems save the entire floating-point state.

• Some save the floating-point state only when it is required.

• Some may save a partial floating-point state.

The existing task switch code for IA implementations (including floating-point code) does
not change for systems that include MMX code.

4.1.1. Cooperative Multitasking Operating System

In a cooperative operating system, application tasks can predetermine when it is about to be
switched out. Tasks can prepare in advance for the switch.

Application programmers must know whether the operating system performs a state save or
whether it is their responsibility to perform a state save.

4.1.2. Preemptive Multitasking Operating System

In a preemptive multitasking operating system, the application cannot know when it is
preempted. Applications cannot prepare in advance for task switching. The operating system
is responsible for saving and restoring the state when necessary.

The IA MMX technology was defined to support the same state-saving and restoring
techniques as the floating-point state-saving and restoring techniques. Existing operating
systems can continue to run without modifications.

SYSTEM PROGRAMMING MODEL

4-2

Figure 4-1 illustrates an example of an operating system implementing floating-point or
MMX state saving.

Detecting when to save the FP or MMX state needs to be saved is the same process used for
detecting when the floating-point state needs to be saved. If CR0.TS=1 (task switch bit in
control register 0), then the next FP or MMX instruction generates exception Int 7.

1. The operating system maintains a save area for each task (Save Areas A and B in
Figure 4-1).

2. It defines a variable that indicates which task “owns” the FP or MMX state.

3. On a task switch, the OS sets the CR0.TS to 1 if the incoming task does not own the FP
or MMX state. Otherwise, it sets it to 0.

4. If a new task attempts to use an MMX instruction, (while CR0.TS=1), exception Int 7 is
generated. The Int 7 handler (“owned” by the operating system) saves the FP or MMX
state to the save area of the FP or MMX state owner and restores the FP or MMX state
from the save area of the current task.

5. The ownership of the FP or MMX state then changes to the current task and CR0.TS=0.

TASK A TASK B

Application
Operating System

If incoming task !="FP and
MMX state owner"

 CR0.TS = 1

Else

 CR0.TS = 0

FSAVE "FP and MMX state owner" task area

FRESTOR current-task-area

CR0.TS = 0

"FP and MMX state owner" = current task

Task Switch Code INT 7 Handler

CR0.TS = 1 and FP or MMX Inst.

INT 7

"FP and
MMX
state

owner"

FP and MMX state
Save Area B

FP and MMX state
 Save Area A

3006008

Figure 4-1. Example of FP and MMX State Saving in Operating System

SYSTEM PROGRAMMING MODEL

4-3

4.2. EXCEPTIONS

MMX instructions do not generate numeric exceptions or affect the processor architecture
status flags. Previously pending floating-point numeric errors are reported.

 The MMX instructions can generate the following exceptions:

• Memory access exceptions:

#SS Interrupt 12 - Stack exception

#GP Interrupt 13 - General Protection

#PF Interrupt 14 - Page Fault

#AC Interrupt 17 - Alignment Check, if enabled by CPU configuration.

• System exceptions:

 #UD Interrupt 6 - Invalid Opcode

Executing an MMX instruction when CR0.EM=1 generates an Invalid Opcode exception.

 #NM Interrupt 7 - Device not available. The TS bit in CR0 is set.

• Pending floating-point error:

#MF Interrupt 16 - Pending floating-point error

• Other exceptions that occur indirectly due to faulty execution of the above exceptions.
For example: Interrupt 12 occurs due to MMX instructions, and the interrupt gate directs
the processor to invalid TSS (task state segment).

The MMX instructions are accessible from all operation modes of IA: Protected mode, Real
address mode, and Virtual 8086 mode.

SYSTEM PROGRAMMING MODEL

4-4

4.3. COMPATIBILITY WITH EXISTING SOFTWARE
ENVIRONMENTS

4.3.1. Register Aliasing

The MMX state is aliased on the floating-point state:

• MMX registers MM0-MM7 are aliased on the 64-bit mantissas of the floating-point
register (See Figure 4-2).

• A value written to an MMX register using MMX instructions also appears in one of the
eight floating-point registers (bits 63-0). The exponent field of the corresponding
floating-point register (bits 78-64) and its sign bit (bit 79) are set to ones (11s).

• The mantissa of a floating-point value written to a floating-point register by floating-
point instructions also appears in an MMX register.

SYSTEM PROGRAMMING MODEL

4-5

63FP Tag 0

MM7

MM0

ST7

TOS Status
Word

ST0

00

00

00

00

00

00

00

63FP Tag

TOS=0

00

00

13 11

3006046

Figure 4-2. Aliasing of MMX™ to Floating-Point Registers

SYSTEM PROGRAMMING MODEL

4-6

MMX registers map to the physical locations of floating-point registers. MMX register
mapping is fixed and does not change when the TOS (Top Of Stack field in the floating-point
status word, bits 11-13) changes.

The value of the TOS is set to 0 after each MMX instruction.

In the floating-point context, STn refers to the relative location of a FP register, n, to the
TOS. However, the FP tag bits refer to the physical locations of the FP register. The MMX
registers always refer to the physical location.

In Figure 4-3, the inner circle refers to the physical location of the FP and MMX registers.
The outer circle refers to FP register's relative location to the current TOS.

When the TOS=0 (case a in Figure 4-3), ST0 points to the physical location 0 on the floating-
point stack. MM0 maps to ST0, MM1 maps to ST1, and so on.

When the TOS=2 (case b in Figure 4-3), ST0 points to the physical location 2. MM0 maps to
ST6, MM1 maps to ST7, MM2 maps to ST0, and so on.

0

26

7 1

5 3

4

0

26

7 1

5 3

4

ST=ST0

TOS

ST1ST7

ST2

ST6

TOS

ST7

ST1

ST=ST0

FP “pop”FP “push”

FP “pop”

FP “push”

Case a: TOS=0 Case b: TOS=2

Outer circle = FP register’s logical location relative to TOS
Inner circle = FP tags = MMX register’s location = FP register’s physical location

3006006

Figure 4-3. Mapping of MMX™ Registers to Floating Point Registers

SYSTEM PROGRAMMING MODEL

4-7

4.3.2. The Effect of Floating-Point and MMX™ Instructions on the
Floating-Point Tag Word

Using an MMX instruction (except EMMS) validates (sets to 00s) the entire floating-point
tag word.

The EMMS instruction sets the entire FP tag bits register to empty (11s in each tag field).

FSAVE and FSTENV instructions read the FP tag word and store the contents of the FP tag
word in memory. Executing these instructions calculates the precise values of the FP tag
word fields based on the current contents of the registers. After executing these instructions,
all tag bit values are valid for MMX instructions: Valid, Zero, Special, Empty. The value of
the FP tag word does not affect the MMX registers or execution of MMX instructions.

Table 4-1 summarizes the effect of FP or MMX instructions and FSAVE/ FSTENV
instructions on the tag bit fields in an FP or MMX register and defines their value in memory.

Table 4-1. Effect of the FP and MMX Instructions on the FP Tag Word

Instruction Type Instruction Tag Bits

Calculated FP Tag
Word in Memory After

FSAVE/FSTENV

MMX™ All (except EMMS) All registers' tags are
set to zeros (00).

00, 01, 10

MMX EMMS All registers' tags are
set to ones (11).

11

FP All (except FRSTOR,
FLDENV)

Individual register tag is
set to 00 or 11.

Each register’s tags are
set to 00, 11, 01 or 10.

FP FRSTOR, FLDENV All registers' tags are
set to 00 or 11 or 01 or
10.

Each register’s tags are
set to 00, 11, 01 or 10.

SYSTEM PROGRAMMING MODEL

4-8

4.3.2.1. ALIASING SUMMARY

Table 4-2 summarizes the effects of the MMX instructions on the floating-point state.

Table 4-2. Effects of MMX™ Instruction on FP State

Instruction
Type FP Tag Word

TOS
(SW13..11)

Other FP
Environment

(CW, Data Ptr,
Code Ptr, Other

Fields)

Exponent Bits +
Signed Bit of
MMn (79..64)

Mantissa Part of
MMn (63..00)

MMX register
read from MMX
register (MMn)

All fields set to
00 (Valid)

000 Unchanged Unchanged Unchanged

MMX register
write to MMX
register (MMn)

All fields set to
00 (Valid)

000 Unchanged Set to ones (11) Overwritten

EMMS All fields set to
11 (Empty)

000 Unchanged Unchanged Unchanged

Note: MMn refers to one MMX register.

4.3.3. Context Switch Support

If the task switch bit (TS) in control register 0 (CR0) is set (CR0.TS=1), the first FP or MMX
instruction that executes will trigger Int 7, Device not available (DNA). Causing a DNA fault
enables an operating system to save the context of the FP or MMX registers with the same
code currently used to save the FP state. Both the FSAVE (Store FP state) and FRSTOR
(Restore FP state) instructions are used to save and restore either the FP or MMX state.

See Section 4.1. for more details on context switching.

4.3.4. Floating-Point Exceptions

When floating-point exceptions are enabled and a FP exception is pending, subsequent MMX
instruction execution reports an FP error (Int 16 and/or FERR# signal). The pending
exception is handled by the FP exception handler. Execution resumes at the interrupted
MMX instruction.

Before the MMX instruction is executed, the FP state is maintained and is visible to the FP
exception handler.

See Section 3.3.6 for more detail.

SYSTEM PROGRAMMING MODEL

4-9

4.3.5. Debugging

The debug features for Intel Architecture implementations operate in the same manner on the
MMX instruction set. This enables debuggers to debug code that uses the MMX technology.

4.3.6. Emulation of the Instruction Set

There is no emulation support for microprocessors that support the MMX technology.

The CR0.EM bit used to emulate floating-point instructions cannot be used in the same way
for MMX instruction emulation. If an MMX instruction executes when the CR0.EM bit is
set, an invalid opcode exception (Int 6) is generated.

4.3.7. Exception handling in Operating Systems

This section specifies system exceptions. Exception handling in MMX code is discussed in
Section 3.3.6.

An invalid opcode exception (Int 6) can occur due to MMX instruction execution two cases:

• On implementations that do not support IA MMX technology.

• When CR0.EM=1 and an MMX instruction is executed.

The CR0.EM bit is used to emulate the FP instructions in software. In this case, the operating
system does not save the FP hardware state on task switches and does not save the MMX
state. An invalid opcode exception is generated to flag this event to the operating system,
and prevent application errors from occurring.

5
Intel Architecture
MMX™ Instruction
Set

5-1

CHAPTER 5
INTEL ARCHITECTURE MMX™ INSTRUCTION

SET

This chapter presents the Intel Architecture MMX™ instructions in alphabetical order, with a
full description of each instruction.

The IA MMX technology defines fifty-seven new instructions. The instructions are grouped
into the following functional categories:

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Data Transfer Instructions

• Empty MMX State (EMMS) Instruction

Appendix A summarizes the MMX instructions grouped by categories of related functions.
Appendix B provides instruction formats and encodings, and Appendix C provides an
alphabetical list of instruction mnemonics, their source data types, encodings in hexadecimal,
and format. Appendix D provides an Opcode Map of the MMX instructions.

Many of the instructions have multiple variations depending on the data types they support.
Each variation has a different suffix. For example the PADD instruction has three variations:
PADDB, PADDW, and PADDD, where the letters B, W, and D represent byte, word, and
doubleword.

5.1. INSTRUCTION SYNTAX

Instructions vary by:

• Data type: packed bytes, packed words, packed doublewords or quadwords

• Signed - Unsigned numbers

• Wraparound - Saturate arithmetic

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-2

A typical MMX instruction has this syntax:

• Prefix: P for Packed

• Instruction operation: for example - ADD, CMP, or XOR

• Suffix:

 US for Unsigned Saturation

 S for Signed saturation

 B, W, D, Q for the data type: packed byte, packed word, packed doubleword, or
quadword.

Instructions that have different input and output data elements have two data-type suffixes.
For example, the conversion instruction converts from one data type to another. It has two
suffixes: one for the original data type and the second for the converted data type.

This is an example of an instruction mnemonic syntax :

PADDUSW (Packed Add Unsigned with Saturation for Word)

P = Packed

ADD = the instruction operation

US = Unsigned Saturation

W = Word

5.2. INSTRUCTION FORMAT

The IA MMX instructions use the existing IA instruction format. All instructions, except the
EMMS instruction, use the ModR/M format. All are preceded by the 0F prefix byte. For
more details about the ModR/M format refer to Pentium® Processor Family Developer’s
Manual Volume 3, Section 25.2.1.

For data-transfer instructions, the destination and source operands can reside in memory,
integer registers, or MMX registers. For all other IA MMX instructions, the destination
operands reside in MMX registers, and the source operands reside in memory, MMX
registers, or immediate operands.

All existing address modes are supported using the SIB (Scale Index Base) format.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-3

5.3. NOTATIONAL CONVENTIONS

The following conventions apply to all MMX instructions (except the EMMS instruction):

• The instructions reference and operate on two operands: the source and destination
operands. The right operand is the source and the left operand is the destination. The
destination operand may also supply one of the inputs for the operation. The instruction
overwrites the destination operand with the result.

• When one of the operands is a memory location, the linear address corresponds to the
address of the least significant byte of the referenced memory data.

• The MMX instructions do not affect the condition flags.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-4

5.4. HOW TO READ THE INSTRUCTION SET PAGES

The following is an example of the format used for each MMX instruction description in this
chapter:

PSLL—Packed Shift Left Logical
Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift all words in MMX register to left by an amount
specified in MMX register/memory, while shifting in
zeros.

The above table gives the instruction mnemonic and a brief description of the mnemonic.
The columns content are explained below.

Opcode Column

The "Opcode" column provides the complete opcode produced for each form of the
instruction.

 The codes are defined as hexadecimal bytes, in the same order in which they appear in
memory. Definitions of entries other than hexadecimal bytes are as follows:

• /digit: (digit is between 0 and 7) indicates that the ModR/M byte of the instruction
uses only the r/m (register or memory) operand. The reg field contains the digit that
provides a technology to the instruction’s opcode.

• /r: indicates that the ModR/M byte of the instruction contains both a register
operand and an r/m operand.

• ib: a 1-byte, immediate operand to the instruction that follows the opcode, ModR/M
bytes, and scale-indexing bytes. The opcode determines if the operand is a signed
value.

Instruction Column

The "Instruction" column contains the instruction syntax. The following is a list of the
symbols used to represent operands in the instruction statements:

• imm8: an immediate byte value, imm8 is a signed number between -128 and +127
inclusive.

• r/m32: a doubleword register or memory operand used for instructions whose
operand-size attribute is 32 bits.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-5

• mm/m32: indicates the lowest 32 bits of an MMX register or a 32-bit memory
location.

• mm/m64: indicates a 64-bit MMX register or a 64-bit memory location.

Description Column

The "Description" column briefly explains the instruction activity.

Operation

The "Operation" section contains an algorithmic description of the operation performed by
the instruction.

The register name or memory location implies the contents of the register or memory.

The bit values are written from high-order to low-order and indicate the address within the
register or memory. The bit addresses are specified along with the register name or memory
location in brackets. For example mm(7..0) represents the low-order 8 bits in an MMX
register.

The algorithms are composed of the following elements:

• Comments are enclosed with the symbol pairs “(*” and “*)”.

• Compound statements are enclosed between the keywords of the “if” statement (IF,
THEN, ELSE).

• A ← B; indicates that the value of B is assigned to A.

• The symbols =, <>, >, <, ≥, and ≤ are relational operators used to compare two values,
meaning equal, not equal, greater or equal, less or equal, respectively. A relational
expression such as A=B is TRUE if the value for A is equal to B; otherwise it is FALSE.

The following functions are used in the algorithmic descriptions:

• ZeroExtend (value) returns a value zero-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, ZeroExtend of a byte value of -10
converts the byte from F6H to doubleword with hexadecimal value 000000F6H. If the
value passed to ZeroExtend and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

• SignExtend (value) returns a value sign-extended to the operand-size attribute of the
instruction. For example, if OperandSize = 32, SignExtend of a byte containing the
value -10 converts the byte from F6H to doubleword with hexadecimal value
FFFFFFF6H. If the value passed to SignExtend and the operand-size attribute are the
same size, SignExtend returns the value unaltered.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-6

• SaturateSignedWordToSignedByte converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than -128, it is represented by the saturated value
-128 (0x80). If it is greater than 127, it is represented by the saturated value 127 (0x7F).

• SaturateSignedDwordToSignedWord converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than -32768, it is represented by the saturated
value -32768 (0x8000). If it is greater than 32767, it is represented by the saturated value
32767 (0x7FFF).

• SaturateSignedWordToUnsignedByte converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero it is represented by the saturated
value zero (0x00).If it is greater than 255 it is represented by the saturated value 255
(0xFF).

• SaturateToSignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than -128, it is represented by the saturated value -128 (0x80). If it is
greater than 127, it is represented by the saturated value 127 (0x7F).

• SaturateToSignedWord represents the result of an operation as a signed 16-bit value. If
the result is less than -32768, it is represented by the saturated value -32768 (0x8000).If
it is greater than 32767, it is represented by the saturated value 32767 (0x7FFF).

• SaturateToUnsignedByte represents the result of an operation as a signed 8-bit value. If
the result is less than zero it is represented by the saturated value zero (0x00). If it is
greater than 255, it is represented by the saturated value 255 (0xFF).

• SaturateToUnsignedWord represents the result of an operation as a signed 16-bit value.
If the result is less than zero it is represented by the saturated value zero (0x00).I If it is
greater than 65535, it is represented by the saturated value 65535 (0xFFFF).

Description

The "Description" section describes the operation for all variations of the instruction.

Example

The “Example” section contains a graphical representation of the instruction's functional
behavior.

Exceptions

The "Exceptions" section lists the exceptions in the three different modes: Protected mode,
Real Address mode, and Virtual-8086 mode.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-7

Refer to Section 4.2 of this document for more detail on these exceptions. See also the
Pentium® Processor Family Manual, Volume 3, Section 9.4 and Chapter 14.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-8

EMMS—Empty MMX™ State
Opcode Instruction Description

0F 77 EMMS Set the FP tag word to empty.

Operation

TW ← 0xFFFF;

Description

The EMMS instruction sets the values of the floating-point (FP) tag word to empty (all ones).
EMMS marks the registers as available, so they can subsequently be used by floating-point
instructions.

If a floating-point instruction loads into one of the registers before it has been reset by the
EMMS instruction, a floating-point stack overflow can occur, which results in an FP
exception or incorrect result.

All other MMX instructions validate the entire FP tag word (all zeros).

NOTE

This instruction must be used to clear the MMX state at the end of all MMX
routines, and before calling other routines that may execute floating-point
instructions.

Figure 5-1 shows the format of the FP Tag Word.

15 0
I

FP tag(7)
I

FP tag(6)
I

FP tag(5)
I

FP tag(4)
I

FP tag(3)
I

FPtag(2)
I

FPtag(1)
I

FPtag(0)

Tag values: 00 = Valid 10 = Valid
01 = Valid 11 = Empty

3006047

Figure 5-1. Floating Point Tag Word Format

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-9

Protected Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Virtual 8086 Mode Exceptions

#UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-10

MOVD—Move 32 Bits
Opcode Instruction Description

0F 6E /r MOVD mm, r/m32 Move 32 bits from integer register/memory to MMX register.
0F 7E /r MOVD r/m32, mm Move 32 bits from MMX register to integer register/memory.

Operation

IF destination = mm
THEN
 mm(63..0) ← ZeroExtend(r/m32);
ELSE
 r/m32 ← mm(31..0);

Description

The MOVD instruction copies 32 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers, 32-bit memory operands,
or 32-bit integer registers. The MOVD cannot transfer data from an MMX register to an
MMX register, from memory to memory, or from an integer register to an integer register.

When the destination operand is an MMX register, the 32-bit source operand is written to the
low-order 32 bits of the 64-bit destination register. The destination register is zero-extended
to 64 bits.

When the source operand is an MMX register, the low-order 32 bits of the MMX register are
written to the 32-bit integer register or 32-bit memory location.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-11

Example

MOVD m32, mm

MOVD mm, r32
63

31 0

32 31

mm

m32

15 0

0
00000000

b b b b r32

b b b b

63

mm

0
xxxxxxxx b b b

b b

b b

W

W

32 31

3 2 1 0

3

01

2 N+1

N+1

3 2 1 0

b3 2 1 0

3006010

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-12

MOVQ—Move 64 Bits
Opcode Instruction Description

0F 6F /r MOVQ mm, mm/m64 Move 64 bits from MMX register/memory to MMX register.
0F 7F /r MOVQ mm/m64, mm Move 64 bits from MMX register to MMX register/memory.

Operation

IF destination = mm
THEN
 mm ← mm/m64;
ELSE
 mm/m64 ← mm;

Description

The MOVQ instruction copies 64 bits from the source operand to the destination operand.

The destination and source operands can be either MMX registers or 64-bit memory
operands. The MOVQ instruction cannot transfer data from memory to memory.

When the destination is an MMX register and the source is a 64-bit memory operand, the
64 bits of data at the memory location are copied into the MMX register.

When the destination is a 64-bit memory operand and the source is an MMX register, the
64 bits of data are copied from the MMX register into the memory location.

When the destination and source are both MMX registers, the contents of the MMX register
(source) are copied into an MMX register (destination).

Example

MOVQ mm, m64
63 48 47 32 31

mm

m64

15 0

1615 0
b7 b6 b5 b4 b3 b2 b1 b0

b7 b6

b5 b4

b3 b2

b1

W

W

W

Wb0
N+1

N+2

N+3

N+0

3006013

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-13

Flags Affected

None.

Protected Mode Exceptions

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the
SS segment; #PF(fault-code) for a page fault; #AC for unaligned memory reference if the
current privilege level is 3; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is
a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-14

PACKSSWB /PACKSSDW —Pack with Signed Saturation
Opcode Instruction Description

0F 63 /r PACKSSWB mm, mm/m64 Pack and saturate signed words from MMX register and MMX
register/memory into signed bytes in MMX register.

0F 6B /r PACKSSDW mm, mm/m64 Pack and saturate signed dwords from MMX register and MMX
register/memory into signed words in MMX register.

Operation

IF instruction is PACKSSWB
THEN {
 mm(7..0) ← SaturateSignedWordToSignedByte mm(15..0);
 mm(15..8) ← SaturateSignedWordToSignedByte mm(31..16);
 mm(23..16) ← SaturateSignedWordToSignedByte mm(47..32);
 mm(31..24) ← SaturateSignedWordToSignedByte mm(63..48);
 mm(39..32) ← SaturateSignedWordToSignedByte mm/m64(15..0);
 mm(47..40) ← SaturateSignedWordToSignedByte mm/m64(31..16);
 mm(55..48) ← SaturateSignedWordToSignedByte mm/m64(47..32);
 mm(63..56) ← SaturateSignedWordToSignedByte mm/m64(63..48);
 }
ELSE { (* instruction is PACKSSDW *)
 mm(15..0) ← SaturateSignedDwordToSignedWord mm(31..0);
 mm(31..16) ← SaturateSignedDwordToSignedWord mm(63..32);
 mm(47..32) ← SaturateSignedDwordToSignedWord mm/m64(31..0);
 mm(63..48) ← SaturateSignedDwordToSignedWord mm/m64(63..32);
 }

Description

The PACKSS instruction packs and saturates the signed data elements from the source and
the destination operands and writes the signed results to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PACKSSWB instruction packs four signed words from the source operand and four
signed words from the destination operand into eight signed bytes in the destination register.
If the signed value of a word is larger or smaller than the range of a signed byte, the value is
saturated (in the case of an overflow - to 0x7F, and in the case of an underflow - to 0x80).

The PACKSSDW instruction packs two signed doublewords from the source operand and
two signed doublewords from the destination operand into four signed words in the
destination register. If the signed value of a doubleword is larger or smaller than the range of

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-15

a signed word, the value is saturated (in the case of an overflow - to 0x7FFF, and in the case
of an underflow - to 0x8000).

Example

PACKSSDW mm, mm/m64

mm/m64 mm

D

C

D'

mm

C'

B'

A'

B

A

3006012

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-16

PACKUSWB —Pack with Unsigned Saturation
Opcode Instruction Description

0F 67 /r PACKUSWB mm, mm/m64 Pack and saturate signed words from MMX register and MMX
register/memory into unsigned bytes in MMX register.

Operation

 mm(7..0) ← SaturateSignedWordToUnsignedByte mm(15..0);
 mm(15..8)← SaturateSignedWordToUnsignedByte mm(31..15);
 mm(23..16) ← SaturateSignedWordToUnsignedByte mm(47..32);
 mm(31..24) ← SaturateSignedWordToUnsignedByte mm(63..48);
 mm(39..32) ← SaturateSignedWordToUnsignedByte mm/m64(15..0);
 mm(47..40) ← SaturateSignedWordToUnsignedByte mm/m64(31..16);
 mm(55..48) ← SaturateSignedWordToUnsignedByte mm/m64(47..32);
 mm(63..56) ← SaturateSignedWordToUnsignedByte mm/m64(63..48);

Description:

The PACKUSWB packs and saturates four signed words of the source operand and four
signed words of the destination operand into eight unsigned bytes. The result is written to the
destination operand

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

If the signed value of the word is larger or smaller than the range of an unsigned byte, the
value is saturated (in the case of an overflow - to 0xFF and in the case of an underflow - to
0x00).

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-17

Example

PACKUSWB mm, mm/m64
mm/m64 mm

mm

H

G

F

E

H'

G'

F'

E'

D'

C'

B'

A'

D

C

B

A

3006014

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-18

PADDB/PADDW/PADDD —Packed Add
Opcode Instruction Description

0F FC /r PADDB mm, mm/m64 Add packed byte from MMX register/memory to packed byte in
MMX register.

0F FD /r PADDW mm, mm/m64 Add packed word from MMX register/memory to packed word in
MMX register.

0F FE /r PADDD mm, mm/m64 Add packed dword from MMX register/memory to packed dword in
MMX register.

Operation

IF instruction is PADDB
THEN {
 mm(7..0) ← mm(7..0) + mm/m64(7..0);
 mm(15..8) ← mm(15..8) + mm/m64(15..8);
 mm(23..16) ← mm(23..16)+ mm/m64(23..16);
 mm(31..24) ← mm(31..24) + mm/m64(31..24);
 mm(39..32) ← mm(39..32) + mm/m64(39..32);
 mm(47..40) ← mm(47..40)+ mm/m64(47..40);
 mm(55..48) ← mm(55..48) + mm/m64(55..48);
 mm(63..56) ← mm(63..56) + mm/m64(63..56);
 }
IF instruction is PADDW
THEN {
 mm(15..0) ← mm(15..0) + mm/m64(15..0);
 mm(31..16) ← mm(31..16) + mm/m64(31..16);
 mm(47..32) ← mm(47..32) + mm/m64(47..32);
 mm(63..48) ← mm(63..48) + mm/m64(63..48);
 }
ELSE { (* instruction is PADDD *)
 mm(31..0) ← mm(31..0) + mm/m64(31..0);
 mm(63..32) ← mm(63..32) + mm/m64(63..32);
 }

Description

The PADD instructions add the data elements of the source operand to the data elements of
the destination register. The result is written to the destination register. If the result exceeds
the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-19

The PADDB instruction adds the bytes of the source operand to the bytes of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed byte (overflow), the result wraps around and the lower 8 bits are
written to the destination register.

The PADDW instruction adds the words of the source operand to the words of the destination
operand and writes the results to the MMX register. When the result is too large to be
represented in a packed word (overflow), the result wraps around and the lower 16 bits are
written to the destination register.

The PADDD instruction adds the doublewords of the source operand to the doublewords of
the destination operand and writes the results to the MMX register. When the result is too
large to be represented in a packed doubleword (overflow), the result wraps around and the
lower 32 bits are written to the destination register.

Example

PADDW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

0111111111111111 1001011000111111

3006015

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-20

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-21

PADDSB/PADDSW —Packed Add with Saturation
Opcode Instruction Description

0F EC /r PADDSB mm, mm/m64 Add signed packed byte from MMX register/memory to signed
packed byte in MMX register and saturate.

0F ED /r PADDSW mm, mm/m64 Add signed packed word from MMX register/memory to signed
packed word in MMX register and saturate.

Operation

IF instruction is PADDSB
THEN{
 mm(7..0) ← SaturateToSignedByte (mm(7..0) + mm/m64 (7..0)) ;
 mm(15..8) ← SaturateToSignedByte (mm(15..8) + mm/m64(15..8));
 mm(23..16) ← SaturateToSignedByte (mm(23..16)+ mm/m64(23..16));
 mm(31..24) ← SaturateToSignedByte (mm(31..24) + mm/m64(31..24));
 mm(39..32) ← SaturateToSignedByte (mm(39..32) + mm/m64(39..32));
 mm(47..40) ← SaturateToSignedByte (mm(47..40)+ mm/m64(47..40));
 mm(55..48) ← SaturateToSignedByte (mm(55..48) + mm/m64(55..48));
 mm(63..56) ← SaturateToSignedByte (mm(63..56) + mm/m64(63..56));
 }
ELSE { (* instruction is PADDW *)
 mm(15..0) ← SaturateToSignedWord (mm(15..0) + mm/m64(15..0));
 mm(31..16) ← SaturateToSignedWord (mm(31..16) + mm/m64(31..16));
 mm(47..32) ← SaturateToSignedWord (mm(47..32) + mm/m64(47..32));
 mm(63..48) ← SaturateToSignedWord (mm(63..48) + mm/m64(63..48));
 }

Description

The PADDS instructions add the packed signed data elements of the source operand to the
packed signed data elements of the destination operand and saturate the result. The result is
written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDSB instruction adds the signed bytes of the source operand to the signed bytes of
the destination operand and writes the results to the MMX register. If the result is larger or
smaller than the range of a signed byte, the value is saturated (in the case of an overflow - to
0x7F, and in the case of an underflow - to 0x80).

The PADDSW instruction adds the signed words of the source operand to the signed words
of the destination operand and writes the results to the MMX register. If the result is larger or

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-22

smaller than the range of a signed word, the value is saturated (in the case of an overflow - to
0x7FFF, and in the case of an underflow - to 0x8000) .

Example

PADDSW mm, mm/m64

mm

mm/m64

mm

1000000000000000 0111111100111000

+ ++ +
1111111111111111 0001011100000111

1000000000000000 0111111111111111

3006016

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-23

PADDUSB/PADDUSW —Packed Add Unsigned with
Saturation

Opcode Instruction Description

0F DC /r PADDUSB mm, mm/m64 Add unsigned packed byte from MMX register/memory to unsigned
packed byte in MMX register and saturate.

0F DD /r PADDUSW mm, mm/m64 Add unsigned packed word from MMX register/memory to unsigned
packed word in MMX register and saturate.

Operation

IF instruction is PADDUSB
THEN{
 mm(7..0) ← SaturateToUnsignedByte (mm(7..0) + mm/m64 (7..0));
 mm(15..8) ← SaturateToUnsignedByte (mm(15..8) + mm/m64(15..8));
 mm(23..16) ← SaturateToUnsignedByte (mm(23..16)+ mm/m64(23..16));
 mm(31..24) ← SaturateToUnsignedByte (mm(31..24) + mm/m64(31..24));
 mm(39..32) ← SaturateToUnsignedByte (mm(39..32) + mm/m64(39..32));
 mm(47..40) ← SaturateToUnsignedByte (mm(47..40)+ mm/m64(47..40));
 mm(55..48) ← SaturateToUnsignedByte (mm(55..48) + mm/m64(55..48));
 mm(63..56) ← SaturateToUnsignedByte (mm(63..56) + mm/m64(63..56));
 }
ELSE { (* instruction is PADDUSW *)
 mm(15..0) ← SaturateToUnsignedWord (mm(15..0) + mm/m64(15..0));
 mm(31..16) ← SaturateToUnsignedWord (mm(31..16) + mm/m64(31..16));
 mm(47..32) ← SaturateToUnsignedWord (mm(47..32) + mm/m64(47..32));
 mm(63..48) ← SaturateToUnsignedWord (mm(63..48) + mm/m64(63..48));
 }

Description

The PADDUS instructions add the packed unsigned data elements of the source operand to
the packed unsigned data elements of the destination operand and saturate the results. The
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PADDUSB instruction adds the unsigned bytes of the source operand to the unsigned
bytes of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned byte (overflow), the value is saturated to 0xFF. When
the result is smaller than the range of an unsigned byte (underflow), the value is saturated to
0x00.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-24

The PADDUSW instruction adds the unsigned words of the source operand to the unsigned
words of the destination operand and writes the results to the MMX register. When the result
is larger than the range of an unsigned word (overflow), the value is saturated to 0xFFFF.
When the result is smaller than the range of an unsigned word (underflow), the value is
saturated to 0x0000.

Example

PADDUSB mm, mm/m64

mm

mm/m64

mm

10000000 01111111 00111000

11111111 00010111 00000111

11111111 10010110 00111111

+ ++ + + ++ +

3006017

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-25

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-26

PAND—Bitwise Logical And
Opcode Instruction Description

0F DB /r PAND mm, mm/m64 AND 64 bits from MMX register/memory to MMX register.

Operation
mm ←mm AND mm/m64;

Description

The PAND instruction performs a bitwise logical AND on 64 bits of the source and
destination operands, and writes the result to the destination operand.

Each bit of the result of the PAND instruction is set to 1 if the corresponding bits of the
operands are 1. Otherwise, it is set to 0.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PAND mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

0001000011011000000000000000000100010100100010000001010100010101

&

3006019

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-27

#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-28

PANDN—Bitwise Logical And Not
Opcode Instruction Description

0F DF /r PANDN mm, mm/m64 Invert the 64 bits in MMX register, AND inverted MMX register
with MMX register/memory.

Operation

mm ←(NOT mm) AND mm/m64;

Description

The PANDN instruction performs a bitwise logical NOT on the 64 bits of the destination
operand. The NOT inverts each of the 64 bits of the destination register so that every 1
becomes a 0, and visa versa.

The instruction then performs a bitwise logical AND on the inverted 64 bits of the
destination operand and on the source operand. Each bit of the result of the AND instruction
is set to 1 if the corresponding bits are 1. Otherwise, it is set to 0. The result is written to the
destination register.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

~

&
m/m64

mm

mm 11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

11111111111110000000000000000101101101010011101111000100010001000

PANDN mm, mm/m64

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-29

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-30

PCMPEQB/PCMPEQW/PCMPEQD —Packed Compare for
Equal
Opcode Instruction Description

0F 74 /r PCMPEQB mm, mm/m64 Compare packed byte in MMX register/memory with packed byte in
MMX register for equality.

07, 75, /r PCMPEQW mm, mm/m64 Compare packed word in MMX register/memory with packed word
in MMX register for equality.

07, 76, /r PCMPEQD mm, mm/m64 Compare packed dword in MMX register/memory with packed
dword in MMX register for equality.

Operation

IF instruction is PCMPEQB
THEN {
 IF mm(7..0) = mm/m64(7..0)
 THEN mm(7 0) ← 0xFF;
 ELSE mm(7..0) ← 0;
 IF mm(15..8) = mm/m64(15.. 8)

 THEN mm(15..8) ← 0xFF;
 ELSE mm(15..8) ← 0;
 ...
 IF mm(63..56) = mm/m64(63..56)

 THEN mm(63..56) ← 0xFF;
 ELSE mm(63..56) ← 0;
 }
ELSE IF instruction is PCMPEQW
THEN {
 IF mm(15..0) = mm/m64(15..0)

 THEN mm(15..0) ← 0xFFFF;
 ELSE mm(15..0) ← 0;
 IF mm(31..16) = mm/m64(31..16)

 THEN mm(31..16) ← 0xFFFF;
 ELSE mm(31..16) ← 0;
 ...
 IF mm(63..48) = mm/m64(63..48)

 THEN mm(63..48) ← 0xFFFF;
 ELSE mm(63..48) ← 0;
 }

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-31

ELSE { (* instruction is PCMPEQD *)
 IF mm(31..0) = mm/m64(31..0)

 THEN mm(31..0) ← 0xFFFFFFFF;
 ELSE mm(31..0) ← 0;
 IF mm(63..32) = mm/m64(63..32)
 THEN mm(63..32) ← 0xFFFFFFFF;
 ELSE mm(63..32) ← 0;
 }

Description

The PCMPEQ instructions compare the data elements in the destination operand to the
corresponding data elements in the source operand. If the data elements are equal, the
corresponding data element in the destination register is set to all ones. If they are not equal,
the corresponding data element is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPEQB instruction compares the bytes in the destination operand to the bytes in the
source operand. The bytes in the destination operand are set accordingly.

The PCMPEQW instruction compares the words in the destination operand to the words in
the source operand. The words in the destination operand are set accordingly.

The PCMPEQD instruction compares the doublewords in the destination operand to the
doublewords in the source operand. The doublewords in the destination operand are set
accordingly.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-32

Example

PCMPEQW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

1111111111111111

0000000000000001

0000000000000000

0000000000000000

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

1111111111111111

True TrueFalse False

== ==== ==

3006020

Flags Affected

None:

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-33

PCMPGTB/PCMPGTW/PCMPGTD —Packed Compare for
Greater Than
Opcode Instruction Description

0F 64 /r PCMPGTB mm, mm/m64 Compare packed byte in MMX register with packed byte in MMX
register/memory for greater value.

0F 65 /r PCMPGTW mm, mm/m64 Compare packed word in MMX register with packed word in MMX
register/memory for greater value.

0F 66 /r PCMPGTD mm, mm/m64 Compare packed dword in MMX register with packed dword in MMX
register/memory for greater value.

Operation

IF instruction is PCMPGTB
THEN {
 IF mm(7..0) > mm/m64(7..0)
 THEN mm(7 0) ← 0xFF;
 ELSE mm(7..0) ← 0;
 IF mm(15..8) > mm/m64(15.. 8)

 THEN mm(15..8) ← 0xFF;
 ELSE mm(15..8) ← 0;
 ...
 IF mm(63..56) > mm/m64(63..56)

 THEN mm(63..56) ← 0xFF;
 ELSE mm(63..56) ← 0;
 }
 ELSE IF instruction is PCMPGTW
THEN {
 IF mm(15..0) > mm/m64(15..0)

 THEN mm(15..0) ← 0xFFFF;
 ELSE mm(15..0) ←0;
 IF mm(31..16) > mm/m64(31..16)

 THEN mm(31..16) ← 0xFFFF;
 ELSE mm(31..16) ← 0;
 ...
 IF mm(63..48) > mm/m64(63..48)

 THEN mm(63..48) ← 0xFFFF;
 ELSE mm(63..48) ← 0;
 }
ELSE { (* instruction is PCMPGTD *)
 IF mm(31..0) > mm/m64(31..0)

 THEN mm(31..0) ← 0xFFFFFFFF;
 ELSE mm(31..0) ← 0;
 IF mm(63..32) > mm/m64(63..32)

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-34

 THEN mm(63..32) ← 0xFFFFFFFF;
 ELSE mm(63..32) ← 0;
 }

Description

The PCMPGT instructions compare the signed data elements in the destination operand to
the signed data elements in the source operand. If the signed data elements in the destination
register are greater than those in the source operand, the corresponding data element in the
destination operand is set to all ones. Otherwise, it is set to all zeros.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PCMPGTB instruction compares the signed bytes in the destination operand to the
corresponding signed bytes in the source operand. The bytes in the destination register are set
accordingly.

The PCMPGTW instruction compares the signed words in the destination operand to the
corresponding signed words in the source operand. The words in the destination register are
set accordingly.

The PCMPGTD instruction compares the signed doublewords in the destination operand to
the corresponding signed words in the source operand. The doublewords in the destination
register are set accordingly.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-35

Example

PCMPGTW mm, mm/m64

mm

mm/m64

mm

0000000000000000

0000000000000000

0000000000000000

0000000000000001

0000000000000000

1111111111111111

0000000000000111

0111000111000111

0000000000000000

0111000111000111

0111000111000111

0000000000000000

False FalseTrue False

> >> >

3006021

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-36

PMADDWD —Packed Multiply and Add
Opcode Instruction Description

0F F5 /r PMADDWD mm, mm/m64 Multiply the packed word in MMX register by the packed word in
MMX reg/memory. Add the 32-bit results pairwise and store in MMX
register as dword

Operation

 mm(31..0) ← mm(15..0) * mm/m64(15..0) + mm(31..16) * mm/m64(31..16);
 mm(63..32) ← mm(47..32) * mm/m64(47..32) + mm(63..48) * mm/m64(63..48);

Description

The PMADDWD instruction multiplies the four signed words of the destination operand by
the four signed words of the source operand. The result is two 32-bit doublewords. The two
high-order words are summed and stored in the upper doubleword of the destination operand.
The two low-order words are summed and stored in the lower doubleword of the destination
operand. This result is written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PMADDWD instruction wraps around to 0x80000000 only when all four words of both
the source and destination operands are 0x8000.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-37

Example

PMADDWD mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100100011100011

0111000111000111

0000010000000000

+ +

* ** *

1001110000000000

3006023

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-38

PMULHW —Packed Multiply High
Opcode Instruction Description

0F E5 /r PMULHW mm, mm/m64 Multiply the signed packed word in MMX register with the signed
packed word in MMX reg/memory, then store the high-order 16 bits of
the results in MMX register.

Operation

mm(15..0) ← (mm(15..0) * mm/m64(15..0)) (31..16);
mm(31..16)← (mm(31..16) * mm/m64(31..16)) (31..16);
mm(47..32) ← (mm(47..32) * mm/m64(47..32)) (31..16);
mm(63..48) ← (mm(63..48) * mm/m64(63..48)) (31..16);

Description

The PMULHW instruction multiplies the four signed words of the destination operand with
the four signed words of the source operand. The high-order 16 bits of the 32-bit intermediate
results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULHW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1100011100011100

0111000111000111

0000010000000000

0000000111000111

High Order High OrderHigh Order High Order

* ** *

3006022

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-39

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-40

PMULLW —Packed Multiply Low
Opcode Instruction Description

0F D5 /r PMULLW mm, mm/m64 Multiply the packed word in MMX register with the packed word in
MMX reg/memory, then store the low-order 16 bits of the results in
MMX register.

Operation

mm(15..0) ← (mm(15..0) * mm/m64(15..0)) (15..0);
mm(31..16) ← (mm(31..16) * mm/m64(31..16)) (15..0);
mm(47..32) ← (mm(47..32) * mm/m64(47..32)) (15..0);
mm(63..48) ← (mm(63..48) * mm/m64(63..48)) (15..0);

Description

The PMULLW instruction multiplies the four signed or unsigned words of the destination
operand with the four signed or unsigned words of the source operand. The low-order 16 bits
of the 32-bit intermediate results are written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

PMULLW mm, mm/m64

mm

mm/m64

mm

0111000111000111

1000000000000000

1000000000000000

0111000111000111

0000010000000000

0001110000000000

Low Order Low OrderLow Order Low Order

* ** *

3006025

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-41

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-42

POR—Bitwise Logical Or
Opcode Instruction Description

0F EB /r POR mm, mm/m64 OR 64 bits from MMX reg/memory with MMX register.

Operation

mm ←mm OR mm/m64;

Description

The POR instruction performs a bitwise logical OR on 64 bits of the destination and source
operands, and writes the result to the destination register.

Each bit of the result is set to 0 if the corresponding bits of the two operands are 0.
Otherwise, the bit is 1.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

Example

POR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1111111111111001010100000011010110111111111011110111011111110111

3006024

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-43

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-44

PSLLW/PSLLD/PSLLQ —Packed Shift Left Logical
Opcode Instruction Description

0F F1 /r PSLLW mm, mm/m64 Shift words in MMX register left by amount specified in MMX
reg/memory, while shifting in zeros.

0F 71 /6, ib PSLLW mm, imm8 Shift words in MMX register left by Imm8, while shifting in zeros.
0F F2 /r PSLLD mm, mm/m64 Shift dwords in MMX register left by amount specified in MMX

reg/memory, while shifting in zeros.
0F 72 /6 ib PSLLD mm, imm8 Shift dwords in MMX register by Imm8, while shifting in zeros..
0F F3 /r PSLLQ mm, mm/m64 Shift MMX register left by amount specified in MMX reg/memory,

while shifting in zeros.
0F 73 /6 ib PSLLQ mm, imm8 Shift MMX register left by Imm8, while shifting in zeros.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSLLW
THEN {
 mm(15..0) ← mm(15..0) << temp;
 mm(31..16) ← mm(31..16) << temp;
 mm(47..32) ← mm(47..32) << temp;
 mm(63..48) ← mm(63..48) << temp;
 }
ELSE IF instruction is PSLLD
THEN {
 mm(31..0) ← mm(31..0) << temp;
 mm(63..32) ← mm(63..32) << temp;
 }
ELSE (* instruction is PSLLQ *)
 mm ← mm << temp;

Description

The PSLL instructions shift the bits of the first operand to the left by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty low-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), 31 (for doublewords), or 63 (for quadwords),
then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-45

The PSLLW instruction shifts each of the four words of the destination register to the left by
the number of bits specified in the count operand. The low-order bit positions (of each word)
are filled with zeros.

The PSLLD instruction shifts each of the two doublewords of the destination register to the
left by the number of bits specified in the count operand. The low-order bit positions (of each
doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the left by the
number of bits specified in the count operand. The low-order bit positions are filled with
zeros.

Example

PSLLW mm, 2

mm

mm

1111111111111100

1111111111110000

0001000111000111

0100011100011100

shift left

shift left shift left shift left

3006026

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-46

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-47

PSRAW/PSRAD —Packed Shift Right Arithmetic
Opcode Instruction Description

0F E1 /r PSRAW mm, mm/m64 Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in sign bits.

0F 71 /4 ib PSRAW mm, imm8 Shift words in MMX register right by Imm8 while shifting in sign bits
0F E2 /r PSRAD mm, mm/m64 Shift dwords in MMX register right by amount specified in MMX

reg/memory while shifting in sign bits.
0F 72 /4 ib PSRAD mm, imm8 Shift dwords in MMX register right by Imm8 while shifting in sign bits.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSRAW
THEN {
 mm(15..0) ← SignExtend (mm(15..0) >>temp);
 mm(31..16) ← SignExtend (mm(31..16) >> temp);
 mm(47..32) ← SignExtend (mm(47..32) >> temp);
 mm(63..48) ← SignExtend (mm(63..48) >> temp);
 }
ELSE { (*instruction is PSRAD *)
 mm(31..0) ← SignExtend (mm(31..0) >> temp);
 mm(63..32) ← SignExtend (mm(63..32) >> temp);
 }

Description

The PSRA instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits of each element are filled with the initial value of the sign
bit of the data element. If the value specified by the second operand is greater than 15 (for
words), or 31 (for doublewords), each destination element is filled with the initial value of
the sign bit of the element.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-48

The PSRAW instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The initial value of the sign bit of the
data elements in the destination operand is copied into the most significant bits of the data
element.

The PSRAD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The initial value of the sign bit of
the data elements in the destination operand is copied into the most significant bits of the
data element.

Example

PSRAW mm, 2

mm

mm

1111111111111100

1111111111111111

1101000111000111

1111010001110001

shift right shift rightshift right shift right

3006048

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-49

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-50

PSRLW/PSRLD/PSRLQ —Packed Shift Right Logical
Opcode Instruction Description

0F D1 /r PSRLW mm, mm/m64 Shift words in MMX register right by amount specified in MMX
reg/memory while shifting in zeros.

0F 71 /2 ib PSRLW mm, imm8 Shift words in MMX register right by Imm8.
0F D2 /r PSRLD mm, mm/m64 Shift dwords in MMX register right by amount specified in MMX

reg/memory while shifting in zeros.
0F 72 /2 ib PSRLD mm, imm8 Shift dwords in MMX register right by Imm8 .
0F D3 /r PSRLQ mm, mm/m64 Shift MMX register right by amount specified in MMX reg/memory while

shifting in zeros.
0F 73 /2 ib PSRLQ mm, imm8 Shift MMX register right by Imm8 while shifting in zeros.

Operation

IF the second operand is imm8
THEN
 temp ← imm8;
ELSE (* second operand is mm/m64 *)
 temp ← mm/m64;
IF instruction is PSRLW
THEN {
 mm(15..0) ← mm(15..0) >> temp;
 mm(31..16) ← mm(31..16) >> temp;
 mm(47..32) ← mm(47..32) >> temp;
 mm(63..48) ← mm(63..48) >> temp;
 }
ELSE IF instruction is PSRLD
THEN {
 mm(31..0) ← mm(31..0) >> temp;
 mm(63..32) ← mm(63..32) >> temp;
 }
ELSE (* instruction is PSRLQ *)
 mm ← mm >> temp;

Description

The PSRL instructions shift the bits of the first operand to the right by the amount of bits
specified in the count operand. The result of the shift operation is written to the destination
register. The empty high-order bits are cleared (set to zero). If the value specified by the
second operand is greater than 15 (for words), or 31 (for doublewords), or 63 (for
quadwords), then the destination is set to all zeros.

The destination operand is an MMX register. The count operand (source operand) can be
either an MMX register, a 64-bit memory operand, or an immediate 8-bit operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-51

The PSRLW instruction shifts each of the four words in the destination register to the right
by the number of bits specified in the count operand. The empty high-order bits (of each
word) are filled with zeros.

The PSLLD instruction shifts each of the two doublewords in the destination register to the
right by the number of bits specified in the count operand. The empty high-order bits (of
each doubleword) are filled with zeros.

The PSLLQ instruction shifts the 64-bit quadword in the destination register to the right by
the number of bits specified in the count operand. The empty high-order bits are filled with
zeros.

Example

PSRLW mm, 2

mm

mm

1111111111111100

0011111111111111

0001000111000111

0000010001110001

shift right shift rightshift right shift right

3006027

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-52

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-53

PSUBB/PSUBW/PSUBD —Packed Subtract
Opcode Instruction Description

0F F8 /r PSUBB mm, mm/m64 Subtract packed byte in MMX reg/memory from packed byte in
MMX register.

0F F9 /r PSUBW mm, mm/m64 Subtract packed word in MMX reg/memory from packed word in
MMX register.

0F FA /r PSUBD mm, mm/m64 Subtract packed dword in MMX reg/memory from packed dword in
MMX register.

Operation

IF instruction is PSUBB
 THEN {
 mm(7..0) ← mm(7..0) - mm/m64(7..0);
 mm(15..8) ← mm(15..8) - mm/m64(15..8);
 mm(23..16) ← mm(23..16) - mm/m64(23..16);
 mm(31..24) ← mm(31..24) - mm/m64(31..24);
 mm(39..32) ← mm(39..32) - mm/m64(39..32);
 mm(47..40) ← mm(47..40) - mm/m64(47..40);
 mm(55..48) ← mm(55..48) - mm/m64(55..48);
 mm(63..56) ← mm(63..56) - mm/m64(63..56);
 }
IF instruction is PSUBW
THEN {
 mm(15..0) ← mm(15..0) - mm/m64(15..0);
 mm(31..16) ← mm(31..16) - mm/m64(31..16);
 mm(47..32) ← mm(47..32) - mm/m64(47..32);
 mm(63..48) ← mm(63..48) - mm/m64(63..48);
 }
ELSE { (* instruction is PSUBD *)
 mm(31..0) ← mm(31..0) - mm/m64(31..0);
 mm(63..32) ← mm(63..32) - mm/m64(63..32);
 }

Description

The PSUB instructions subtract the data elements of the source operand from the data
elements of the destination operand. The result is written to the destination register. If the
result is larger or smaller than the data-range limit for the data type, it wraps around.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-54

The PSUBB instruction subtracts the bytes of the source operand from the bytes of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a byte, the result wraps around and the lower 8 bits are
written to the destination register.

The PSUBW instruction subtracts the words of the source operand from the words of the
destination operand. The result is written to the MMX register. When the result is too large
or too small to be represented in a word, the result wraps around and the lower 16 bits are
written to the destination register.

The PSUBD instruction subtracts the doublewords of the source operand from the
doublewords of the destination operand. The result is written to the MMX register. When the
result is too large or too small to be represented in a doubleword, the result wraps around and
the lower 32 bits are written to the destination register.

Example

PSUBW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

0111111111111111

0111111100111000

1110100011111001

1001011000111111

– –– –

3006028

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-55

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-56

PSUBSB/PSUBSW —Packed Subtract with Saturation
Opcode Instruction Description

0F E8 /r PSUBSB mm, mm/m64 Subtract signed packed byte in MMX reg/memory from signed packed
byte in MMX register and saturate.

0F E9 /r PSUBSW mm, mm/m64 Subtract signed packed word in MMX reg/memory from signed
packed word in MMX register and saturate.

Operation

IF instruction is PSUBSB
 THEN{
 mm(7..0) ← SaturateToSignedByte (mm(7..0) - mm/m64 (7..0));
 mm(15..8) ← SaturateToSignedByte (mm(15..8) - mm/m64(15..8));
 mm(23..16) ← SaturateToSignedByte (mm(23..16) - mm/m64(23..16));
 mm(31..24) ← SaturateToSignedByte (mm(31..24) - mm/m64(31..24));
 mm(39..32) ← SaturateToSignedByte (mm(39..32) - mm/m64(39..32));
 mm(47..40) ← SaturateToSignedByte (mm(47..40) - mm/m64(47..40));
 mm(55..48) ← SaturateToSignedByte (mm(55..48) - mm/m64(55..48));
 mm(63..56) ← SaturateToSignedByte (mm(63..56) - mm/m64(63..56))
 }
ELSE { (* instruction is PSUBSW *)
 mm(15..0) ← SaturateToSignedWord (mm(15..0) - mm/m64(15..0));
 mm(31..16) ← SaturateToSignedWord (mm(31..16) - mm/m64(31..16));
 mm(47..32) ← SaturateToSignedWord (mm(47..32) - mm/m64(47..32));
 mm(63..48) ← SaturateToSignedWord (mm(63..48) - mm/m64(63..48));
 }

Description

The PSUBS instructions subtract the data elements of the source operand from the data
elements of the destination operand. The results are saturated to the limits of a signed data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBB instruction subtracts the signed bytes of the source operand from the signed
bytes of the destination operand, and writes the results to the destination register. If the result
is larger or smaller than the range of a signed byte, the value is saturated; in the case of an
overflow - to 0x7F, and in the case of an underflow - to 0x80.

The PSUBW instruction subtracts the signed words of the source operand from the signed
words of the destination operand and writes the results to the destination register. If the result

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-57

is larger or smaller than the range of a signed word, the value is saturated; in the case of an
overflow to 0x7FFF, and in the case of an underflow to 0x8000.

Example

PSUBSW mm, mm/m64

mm

mm/m64

mm

1000000000000000

0000000000000001

1000000000000000

0111111100111000

1110100011111001

0111111111111111

– –– –

3006029

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-58

PSUBUSB/PSUBSW —Packed Subtract Unsigned with
Saturation
Opcode Instruction Description

0F D8 /r PSUBUSB mm, mm/m64 Subtract unsigned packed byte in MMX reg/memory from unsigned
packed byte in MMX register and saturate.

0F D9 /r PSUBUSW mm, mm/m64 Subtract unsigned packed word in MMX reg/memory from
unsigned packed word in MMX register and saturate.

Operation

IF instruction is PSUBUSB
 THEN{
 mm(7..0) ← SaturateToUnsignedByte (mm(7..0) - mm/m64 (7..0));
 mm(15..8) ← SaturateToUnsignedByte (mm(15..8) - mm/m64(15..8));
 mm(23..16) ← SaturateToUnsignedByte (mm(23..16) - mm/m64(23..16));
 mm(31..24) ← SaturateToUnsignedByte (mm(31..24) - mm/m64(31..24));
 mm(39..32) ← SaturateToUnsignedByte (mm(39..32) - mm/m64(39..32));
 mm(47..40) ← SaturateToUnsignedByte (mm(47..40) - mm/m64(47..40));
 mm(55..48) ← SaturateToUnsignedByte (mm(55..48) - mm/m64(55..48));
 mm(63..56) ← SaturateToUnsignedByte (mm(63..56) - mm/m64(63..56));
 }
ELSE { (* instruction is PSUBUSW *)
 mm(15..0) ← SaturateToUnsignedWord (mm(15..0) - mm/m64(15..0));
 mm(31..16) ← SaturateToUnsignedWord (mm(31..16) - mm/m64(31..16));
 mm(47..32) ← SaturateToUnsignedWord (mm(47..32) - mm/m64(47..32));
 mm(63..48) ← SaturateToUnsignedWord (mm(63..48) - mm/m64(63..48));
 }

Description

The PSUBUS instructions subtract the data elements of the source operand from the data
elements of the destination register. The results are saturated to the limits of an unsigned data
element and written to the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

The PSUBUSB instruction subtracts the bytes of the source operand from the bytes of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to 0x00.

The PSUBUSW instruction subtracts the words of the source operand from the words of the
destination operand and writes the results to the destination register. If the result element is
less than zero (a negative value), it is saturated to 0x0000.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-59

Example

PSUBUSB mm, mm/m64

mm

mm/m64

mm

10000000

11111111

00000000

01111111

00010111

01101000

11111000

00000111

11110001

– –––––– –

3006030

Flags Affected

None.

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-60

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ —Unpack
High Packed Data

Opcode Instruction Description

0F 68 /r PUNPCKHBW mm, mm/m64 Interleave bytes from the high halves of MMX register and MMX
reg/memory into MMX register.

0F 69 /r PUNPCKHWD mm, mm/m64 Interleave words from the high halves of MMX register and MMX
reg/memory into MMX register.

0F 6A /r PUNPCKHDQ mm, mm/m64 Interleave dwords from the high halves of MMX register and MMX
reg/memory into MMX register.

Operation

IF instruction is PUNPCKHBW
THEN {
 mm(63..56) ← mm/m64(63..56);
 mm(55..48) ← mm(63..56);
 mm(47..40) ← mm/m64(55..48);
 mm(39..32) ← mm(55..48);
 mm(31..24) ← mm/m64(47..40);
 mm(23..16) ← mm(47..40);
 mm(15..8) ← mm/m64(39..32);
 mm(7..0) ← mm(39..32);
ELSE IF instruction is PUNPCKHW
THEN {
 mm(63..48) ← mm/m64(63..48);
 mm(47..32) ← mm(63..48);
 mm(31..16) ← mm/m64(47..32);
 mm(15..0) ← mm(47..32);
 }
ELSE { (* instruction is PUNPCKHDQ *)
 mm(63..32) ← mm/m64(63..32);
 mm(31..0) ← mm(63..32)
 }

Description

The PUNPCKH instructions unpack and interleave the high-order data elements of the
destination and source operands into the destination operand. The low-order data elements
are ignored.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 64-bit memory operand.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-61

When unpacking from a memory operand, the full 64-bit operand is accessed from memory.
The instruction uses only the high-order 32 bits.

The PUNPCKHBW instruction interleaves the four high-order bytes of the source operand
and the four high-order bytes of the destination operand and writes them to the MMX
register.

The PUNPCKHWD instruction interleaves the two high-order words of the source operand
and the two high-order words of the destination operand and writes them to the MMX
register.

The PUNPCKHDQ instruction interleaves the high-order 32 bits of the doubleword of the
source operand and the high-order 32-bits of the doubleword of the destination operand and
writes them to the MMX register.

Note

If the source operand is all zeros, the result is a zero extension of the high order elements of
the destination operand. When using the PUNPCKHBW instruction the bytes are zero
extended, or unpacked into unsigned words. When using the PUNPCKHWD instruction, the
words are zero exended, or unpacked into unsigned doublewords.

Example

PUNPCKHBW mm, mm/m64
mm/m64 mm

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

mm
2 1 2 1 2 1 2 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 7 6 6 5 5 4 4

3006031

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-62

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-63

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ —Unpack Low
Packed Data

Opcode Instruction Description

0F 60 /r PUNPCKLBW mm, mm/m32 Interleave bytes from the low halves of MMX register and MMX
reg/memory into MMX register.

0F 61 /r PUNPCKLWD mm, mm/m32 Interleave words from the low halves of MMX register and MMX
reg/memory into MMX register.

0F 62 /r PUNPCKLDQ mm, mm/m32 Interleave dwords from the low halves of MMX register and MMX
reg/memory into MMX register.

Operation

IF instruction is PUNPCKLBW
THEN {
 mm(63..56) ←mm/m32(31..24);
 mm(55..48) ← mm(31..24);
 mm(47..40) ← mm/m32(23..16);
 mm(39..32) ← mm(23..16);
 mm(31..24) ← mm/m32(15..8);
 mm(23..16) ←mm(15..8);
 mm(15..8) ← mm/m32(7..0);
 mm(7..0) ← mm(7..0);
 }
ELSE IF instruction is PUNPCKLWD
THEN {
 mm(63..48) ← mm/m32(31..16);
 mm(47..32) ← mm(31..16);
 mm(31..16) ← mm/m32(15..0);
 mm(15..0) ← mm(15..0);
 }
ELSE{ (* instruction is PUNPCKLDQ *)
 mm(63..32) ← mm/m32(31..0);
 mm(31..0) ← mm(31..0);
 }

Description

The PUNPCKL instructions unpack and interleave the low-order data elements of the
destination and source operands into the destination operand.

The destination operand is an MMX register. The source operand can either be an MMX
register or a 32-bit memory operand. When the source data comes from 64-bit registers, the
upper 32 bits are ignored.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-64

When unpacking from a memory operand, only 32 bits are accessed. The instruction uses all
32 bits.

The PUNPCKLBW instruction interleaves the four low-order bytes of the source operand and
the four low-order bytes of the destination operand and writes them to the MMX register.

The PUNPCKLWD instruction interleaves the two low-order words of the source operand
and the two low-order words of the destination operand and writes them to the MMX
register.

The PUNPCKLDQ instruction interleaves the low-order doubleword of the source operand
and the low-order doubleword of the destination operand and writes them to the MMX
register.

Note

If the source operand has a value of all zeros, the result is a zero extension of the low order
elements of the destination operand. When using the PUNPCKLBW instruction the bytes are
zero extended, or unpacked into unsigned words. When using the PUNPCKLWD instruction,
the words are zero extended, or unpacked into unsigned doublewords.

Example

PUNPCKLBW mm, mm/m32
mm/m32 mm

1 1 1 1 1 1 1 12 2 2 2

mm
2 1 2 1 2 1 2 13 3 2 2 1 1 0 0

3 2 1 0 7 6 5 4 3 2 1 0

3006032

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-65

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-66

PXOR—Bitwise Logical Exclusive OR
Opcode Instruction Description

0F EF /r PXOR mm, mm/m64 XOR 64 bits from MMX reg/memory to MMX register.

Operation

mm ←mm XOR mm/m64;

Description

The PXOR instruction performs a bitwise logical XOR on the 64 bits of the destination with
the source operands and writes the result to destination register.

Each bit of the result is 1 if the corresponding bits of the two operands are different. Each bit
is 0 if the corresponding bits of the operands are the same.

The source operand can either be an MMX register or a 64 bit memory operand.

Example

PXOR mm, mm/m64

mm

mm/m64

mm

1111111111111000000000000000010110110101100010000111011101110111

0001000011011001010100000011000100011110111011110001010110010101

1110111100100001010100000011010010101011011001110110001011100010

^

3006033

Flags Affected

None.

INTEL ARCHITECTURE MMX™ INSTRUCTION SET

5-67

Protected Mode Exceptions

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault;
#AC for unaligned memory reference if the current privilege level is 3; #UD if CR0.EM = 1;
#NM if TS bit in CR0 is set; #MF if there is a pending FPU exception.

Real Address Mode Exceptions

Interrupt 13 if any part of the operand lies outside of the effective address space from 0 to
0FFFFH; #UD if CR0.EM = 1; #NM if TS bit in CR0 is set; #MF if there is a pending FPU
exception.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode; #PF(fault-code) for a page fault; #AC for
unaligned memory reference.

A
IA MMX™
Instruction Set
Summary

A-1

APPENDIX A
IA MMX™ INSTRUCTION SET SUMMARY

Table A-1 summarizes the IA MMX™ instruction set base mnemonics. The instructions are
grouped by categories of related functions.

Most of the instructions have multiple variations that are not listed in Table A-1. For
example, PADD has the following variations: PADDB, PADDW, and PADDD. The
instruction variations and mnemonics are detailed in the Instruction description section of
Chapter 5.

IA MMX™ INSTRUCTION SET SUMMARY

A-2

Table A-1. IA MMX Instruction Set Summary, Grouped into Functional Categories

CATEGORY

Arithmetic
Wraparound

Signed
Saturation

Unsigned
Saturation

addition PADD PADDS PADDUS

subtraction PSUB PSUBS PSUBUS

multiplication PMULL/H

multiply and add PMADD

Comparison compare PCMPEQ

PCMPGT

Conversion pack PACKSS PACKUS

unpack PUNPCKL/H

Logical Packed Full 64-bit

and PAND

and not PANDN

or POR

exclusive or PXOR

Shift shift left logical PSLL PSLL

shift right logical PSRL PSRL

shift right arithmetic PSRA

Data Transfer Operations 32-bit transfers 64-bit transfers

register←register MOVD MOVQ

load from memory MOVD MOVQ

store to memory MOVD MOVQ

FP and MMX™ State Management EMMS

B
IA MMX™
Instruction Formats
and Encodings

B-1

APPENDIX B
IA MMX™ INSTRUCTION FORMATS AND

ENCODINGS

B.1. INSTRUCTION FORMATS
All MMX instructions, except the EMMS instruction, use the same format similar as the
two-byte Intel Architecture integer operations. Details of subfield encodings within these
formats are presented below.

Table B-1. Encoding of Granularity of Data (gg) Field

gg Granularity of Data

00 packed bytes

01 packed words

10 packed doublewords

11 quadword

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-2

Table B-2. Encoding of 32-bit General Purpose (reg) Field for Register-to-Register
Operations

reg Field Register Selected

000 EAX

001 ECX

010 EDX

011 EBX

100 ESP

101 EBP

110 ESI

111 EDI

NOTE: For register-to-register operations, the decoding of integer registers is independent of processor
mode. For register-to-memory operations, the effective address is calculated based on the processor mode in
effect.

Table B-3. Encoding of 64-bit MMX™ Register (mmxreg) Field

mmxreg Field MMX Register Selected

000 mm0

001 mm1

010 mm2

011 mm3

100 mm4

101 mm5

110 mm6

111 mm7

For more details, see Table 25-2, Table 25-3, and Appendix F of the Pentium® Processor
Family Developer’s Manual.

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-3

B.2. INSTRUCTION ENCODINGS AND DATATYPE CROSS-
REFERENCE

For each MMX instruction, Table B-4 lists instruction encodings and the datatypes
supported—byte (B), word (W), doubleword (DW), and quadword (QW).

O = output

I = input

S = signed saturation

U = unsigned saturation

n/a = not applicable

Figure B-1. Key to Codes for Datatype Cross-Reference

Table B-4. IA MMX™ Instruction Formats and Encodings

Instruction Format B W DW QW

EMMS - Empty
MMX state

0000 1111:01110111 n/a n/a n/a n/a

MOVD - Move
doubleword

N N Y N

reg to mmxreg 0000 1111:01101110: 11 mmxreg reg

reg from mmxreg 0000 1111:01111110: 11 mmxreg reg

mem to mmxreg 0000 1111:01101110: mod mmxreg r/m

mem from
mmxreg

0000 1111:01111110: mod mmxreg r/m

MOVQ - Move
quadword

N N N Y

mmxreg2 to
mmxreg1

0000 1111:01101111: 11 mmxreg1 mmxreg2

mmxreg2 from
mmxreg1

0000 1111:01111111: 11 mmxreg1 mmxreg2

mem to mmxreg 0000 1111:01101111: mod mmxreg r/m

mem from
mmxreg

0000 1111:01111111: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-4

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PACKSSDW 1 -
Pack dword to
word data
(signed with
saturation)

n/a O I n/a

mmxreg2 to
mmxreg1

0000 1111:01101011: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:01101011: mod mmxreg r/m

PACKSSWB 1 -
Pack word to
byte data (signed
with saturation)

O I n/a n/a

mmxreg2 to
mmxreg1

0000 1111:01100011: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:01100011: mod mmxreg r/m

PACKUSWB 1 -
Pack word to
byte data
(unsigned with
saturation)

O I n/a n/a

mmxreg2 to
mmxreg1

0000 1111:01100111: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:01100111: mod mmxreg r/m

PADD - Add with
wrap-around

Y Y Y N

mmxreg2 to
mmxreg1

0000 1111: 111111gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111: 111111gg: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-5

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PADDS - Add
signed with
saturation

Y Y N N

mmxreg2 to
mmxreg1

0000 1111: 111011gg: 11 mmxreg1 mmxreg2

memory to reg 0000 1111: 111011gg: mod reg r/m

PADDUS - Add
unsigned with
saturation

Y Y N N

mmxreg2 to
mmxreg1

0000 1111: 110111gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111: 110111gg: mod mmxreg r/m

PAND - Bitwise
And

N N N Y

mmxreg2 to
mmxreg1

0000 1111:11011011: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11011011: mod mmxreg r/m

PANDN - Bitwise
AndNot

N N N Y

mmxreg2 to
mmxreg1

0000 1111:11011111: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11011111: mod mmxreg r/m

PCMPEQ -
Packed compare
for equality

Y Y Y N

mmxreg2 with
mmxreg1

0000 1111:011101gg: 11 mmxreg1 mmxreg2

memory with
mmxreg

0000 1111:011101gg: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-6

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PCMPGT -
Packed compare
greater (signed)

Y Y Y N

mmxreg2 with
mmxreg1

0000 1111:011001gg: 11 mmxreg1 mmxreg2

memory with
mmxreg

0000 1111:011001gg: mod mmxreg r/m

PMADD - Packed
multiply add

n/a I O n/a

mmxreg2 to
mmxreg1

0000 1111:11110101: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11110101: mod mmxreg r/m

PMULH - Packed
multiplication

N Y N N

mmxreg2 to
mmxreg1

0000 1111:11100101: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11100101: mod mmxreg r/m

PMULL - Packed
multiplication

N Y N N

mmxreg2 to
mmxreg1

0000 1111:11010101: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11010101: mod mmxreg r/m

POR - Bitwise Or N N N Y

mmxreg2 to
mmxreg1

0000 1111:11101011: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11101011: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-7

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PSLL2 - Packed
shift left logical

N Y Y Y

mmxreg2 by
mmxreg1

0000 1111:111100gg: 11 mmxreg1 mmxreg2

mmxreg by
memory

0000 1111:111100gg: 11 mmxreg r/m

mmxreg by
immediate

0000 1111:011100gg: 11 110 mmxreg: imm8
data

PSRA2 - Packed
shift right
arithmetic

N Y Y N

mmxreg2 by
mmxreg1

0000 1111:111000gg: 11 mmxreg1 mmxreg2

mmxreg by
memory

0000 1111:111000gg: 11 mmxreg r/m

mmxreg by
immediate

0000 1111:011100gg: 11 100 mmxreg: imm8
data

PSRL2 - Packed
shift right logical

N Y Y Y

mmxreg2 by
mmxreg1

0000 1111:110100gg: 11 mmxreg1 mmxreg2

mmxreg by
memory

0000 1111:110100gg: 11 mmxreg r/m

mmxreg by
immediate

0000 1111:011100gg: 11 010 mmxreg: imm8
data

PSUB - Subtract
with wrap-around

Y Y Y N

mmxreg2 to
mmxreg1

0000 1111:111110gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:111110gg: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-8

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PSUBS -
Subtract signed
with saturation

Y Y N N

mmxreg2 to
mmxreg1

0000 1111:111010gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:111010gg: mod mmxreg r/m

PSUBUS -
Subtract
unsigned with
saturation

Y Y N N

mmxreg2 to
mmxreg1

0000 1111:110110gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:110110gg: mod mmxreg r/m

PUNPCKH -
Unpack high data
to next larger
type

Y Y Y N

mmxreg2 to
mmxreg1

0000 1111:011010gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:011010gg: mod mmxreg r/m

PUNPCKL -
Unpack low data
to next larger
type

Y Y Y N

mmxreg2 to
mmxreg1

0000 1111:011000gg: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:011000gg: mod mmxreg r/m

IA MMX™ INSTRUCTION FORMATS AND ENCODINGS

B-9

Table B-4. IA MMX™ Instruction Formats and Encodings (Contd.)

Instruction Format B W DW QW

PXOR - Bitwise
Xor

N N N Y

mmxreg2 to
mmxreg1

0000 1111:11101111: 11 mmxreg1 mmxreg2

memory to
mmxreg

0000 1111:11101111: mod mmxreg r/m

NOTE:

1. The PACK instructions perform saturation from signed packed data of one type to signed or unsigned data
of the next smaller type.

2. The format of shift instructions has one additional format to support shifting by immediate shift-counts.
The shift operations are not supported equally for all data types.

B-10

C
Alphabetical list of
IA MMX™
Instruction Set
Mnemonics

APPENDIX C
ALPHABETICAL LIST OF IA MMX™

INSTRUCTION SET MNEMONICS

The following table lists the mnemonics of the IA MMX™ instructions in alphabetical order.
For each mnemonic, it summarizes the type of source data, the encoding of the first and
second bytes in hexadecimal, and the format used.

Table C-1. IA MMX™ Instruction Set Mnemonics

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

EMMS None 0F 77 mod-rm, [sib]

MOVD register, memory/iregister 0F 6E mod-rm, [sib]

MOVD memory/iregister, register 0F 7E mod-rm, [sib]

MOVQ register, memory/register 0F 6F mod-rm, [sib]

MOVQ memory/register, register 0F 7F mod-rm, [sib]

PACKSSDW register, memory/register 0F 6B mod-rm, [sib]

PACKSSWB register, memory/register 0F 63 mod-rm, [sib]

PACKUSWB register, memory/register 0F 67 mod-rm, [sib]

PADDB register, memory/register 0F FC mod-rm, [sib]

PADDD register, memory/register 0F FE mod-rm, [sib]

PADDSB register, memory/register 0F EC mod-rm, [sib]

PADDSW register, memory/register 0F ED mod-rm, [sib]

PADDUSB register, memory/register 0F DC mod-rm, [sib]

PADDUSW register, memory/register 0F DD mod-rm, [sib]

PADDW register, memory/register 0F FD mod-rm, [sib]

PAND register, memory/register 0F DB mod-rm, [sib]

PANDN register, memory/register 0F DF mod-rm, [sib]

PCMPEQB register, memory/register 0F 74 mod-rm, [sib]

PCMPEQD register, memory/register 0F 76 mod-rm, [sib]

C-2

Table C-1. IA MMX™ Instruction Set Mnemonics (Contd.)

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

PCMPEQW register, memory/register 0F 75 mod-rm, [sib]

PCMPGTB register, memory/register 0F 64 mod-rm, [sib]

PCMPGTD register, memory/register 0F 66 mod-rm, [sib]

PCMPGTW register, memory/register 0F 65 mod-rm, [sib]

PMADDWD register, memory/register 0F F5 mod-rm, [sib]

PMULHW register, memory/register 0F E5 mod-rm, [sib]

PMULLW register, memory/register 0F D5

mod-rm, [sib]

POR register, memory/register 0F EB mod-rm, [sib]

PSHIMD* register, immediate 0F 72 mod-rm, imm

PSHIMQ* register, immediate 0F 73 mod-rm, imm

PSHIMW* register, immediate 0F 71 mod-rm, imm

PSLLD register, memory/register 0F F2 mod-rm, [sib]

PSLLQ register, memory/register 0F F3 mod-rm, [sib]

PSLLW register, memory/register 0F F1 mod-rm, [sib]

PSRAD register, memory/register 0F E2 mod-rm, [sib]

PSRAW register, memory/register 0F E1 mod-rm, [sib]

PSRLD register, memory/register 0F D2 mod-rm, [sib]

PSRLQ register, memory/register 0F D3 mod-rm, [sib]

PSRLW register, memory/register 0F D1 mod-rm, [sib]

PSUBB register, memory/register 0F F8 mod-rm, [sib]

C-3

Table C-1. IA MMX™ Instruction Set Mnemonics (Contd.)

MNEMONIC OPERAND TYPES Byte 1 Byte 2 Byte 3, [4]

PSUBD register, memory/register 0F FA mod-rm, [sib]

PSUBSB register, memory/register 0F E8 mod-rm, [sib]

PSUBSW register, memory/register 0F E9 mod-rm, [sib]

PSUBUSB register, memory/register 0F D8 mod-rm, [sib]

PSUBUSW register, memory/register 0F D9 mod-rm, [sib]

PSUBW register, memory/register 0F F9 mod-rm, [sib]

PUNPCKHBW register, memory/register 0F 68 mod-rm, [sib]

PUNPCKHDQ register, memory/register 0F 6A mod-rm, [sib]

PUNPCKHWD register, memory/register 0F 69 mod-rm, [sib]

PUNPCKLBW register, memory/register 0F 60 mod-rm, [sib]

PUNPCKLDQ register, memory/register 0F 62 mod-rm, [sib]

PUNPCKLWD register, memory/register 0F 61 mod-rm, [sib]

PXOR register, memory/register 0F EF mod-rm, [sib]

Notes:

* These are not the actual mnemonics:

PSHIMD represents the PSLLD, PSRAD and PSRLD instructions when shifting by immediate shift counts.

PSHIMW represents the PSLLW, PSRAW and PSRLW instructions when shifting by immediate shift counts.

PSHIMQ represents the PSLLQ and PSRLQ instructions when shifting by immediate shift counts.

The instructions that shift by immediate counts are differentiated by the ModR/M bytes (See Appendix B).

	Technology Overview
	Intel Architecture MMX Technology. Introduction
	IA MMX Tecnology features
	Application Programming model
	System programming model
	IA MMX Instruction Set
	Appendix A. Instruction Set Summary
	Appendix B. Instruction formats and Encodings
	Appendix C. Alphabetical list of instruction set mnemonix

